Extended IO Module
 For RSi "S" \& "SW" Series Variable Frequency Drive Instruction Manual

C ϵ (a).
890049-08-00
(c) 2021 Benshaw Inc.

Benshaw retains the right to change specifications and illustrations in text without prior notification. The contents of this document may not be copied without the explicit permission of Benshaw.

BENSHAW

Applied Motor Controls

Safety Information

Carefully read and follow all safety instructions in this manual to avoid unsafe operating conditions, property damage, personal injury, or death. Please keep this manual for future reference.

Safety symbols in this manual

A Danger

Indicates an imminently hazardous situation which, if not avoided, could result in severe injury or death.

Warning

Indicates a potentially hazardous situation which, if not avoided, could result in injury or death.

(1) Caution

Indicates a potentially hazardous situation which, if not avoided, could result in minor injury or property damage.

Safety information

(1) Caution

- ESD (Electrostatic discharge) from the human body may damage sensitive electronic components on the PCB. Therefore, be extremely careful not to touch the PCB or the components on the PCB with bare hands while you work on the I/O PCB.
- Turn off the power to the inverter before making wiring connections. Otherwise, malfunctions including faulty network communication may occur.
- When installing the option board, ensure that the option board is properly connected to the connector on the inverter. Faulty connections may damage the inverter or the option board.
- Check the parameter units before settings the function codes. Wrong units may lead to faulty network communication.

Table of Contents

1 About the Product 1
1.1 Additional Inputs and Outputs. 1
1.2 Items Included 1
2 Installation 2
2.1 Installation of the Extended I/O Module 2
3 Control Terminal Wiring 5
3.1 Terminal Block Layout. 5
3.2 Control Terminal Specifications 6
3.2.1 Input and Output Specification 6
3.3 NPN/PNP Mode Selection 7
3.3.1 NPN (Sink mode) 7
3.3.2 PNP (Source Mode) 8
3.4 Signal (Control) Cable Specifications 8
4 Basic Operations 10
4.1 Basic Functions 10
4.2 Setting Frequency Reference 10
4.2.1 V3 Terminal as the Frequency Reference Source 11
4.2.2 $\quad 14$ Terminal as the Frequency Reference Source 15
4.2.3 $\quad 14$ (V4) Terminal as the Frequency Reference Source 17
4.3 Analog Output 18
4.3.1 Voltage and Current Analog Output 18
4.4 Digital Outputs 21
4.4.1 Multi-function Output Relay Settings 21
4.4.2 Fault Output using Output Relays 24
4.4.3 Relay Output Delay Time Settings. 25
4.4.4 Multi-Function Relay On/Off Control 27
4.5 Digital Inputs 28
4.5.1 Setting Multi-Step Frequencies. 28
4.5.2 Multi-step Acc/Dec Time Configuration 30
4.5.4 Stopping the Acc/Dec Operation 32
4.5.5 Multi-function Input Terminal Control 32
5 Keypad Parameters for the Extended I/O Module 35
5.1 AO, APO Group - Extended IO Group 35
5.2 Additional Extended IO Parameters 38

1 About the Product

The Extended IO option module provides additional digital and analog inputs/outputs to the Benshaw "S" and "SW" series inverters.

1.1 Additional Inputs and Outputs

- $3 \times$ Digital Inputs: P8, P9, P10
- $2 \times$ Relay Outputs (Form C): Relay 3 and Relay 4
- $2 \times$ Analog Inputs: V3 and I4 (14 selectable to V4, 0-10V)
- $1 \times$ Analog Output: A03 selectable to I ($4-20 \mathrm{~mA}$) or V ($0-10 \mathrm{~V}$)
- $1 \times$ RJ45 Connector (for Remote LCD)

1.2 Items Included

Benshaw Part \# PC-100090-00. The Extended I/O consists of following items.

- 1 x Extended I/O Module
- $1 \times$ User manual
- $1 \times$ Brass Stand Off (M3 x L17.3)
- $1 \times$ Brass Stand Off (M3 \times L23)
- $2 \times$ Screws (M3 x L8)

2 Installation

2.1 Installation of the Extended I/O Module

4. Warning Install/Remove the Extended IO module after the power supply of the inverter must be off. If the power supply is plugged when Extended I/O is installed/removed, the inverter will be damaged entirely. Remove the Extended I/O module from the product after the power supply is totally discharged.
(7) Caution For the following inverters, 0.5 HP and $1.0 \mathrm{HP}, 230 \mathrm{~V}$ and 460 V , it is impossible to do wiring of main source and standard IO after assembly of Extended I/O module. Install the Extended I/O module after wiring of main source and standard IO.

- Take off the power supply cover (1) and the I/O cover (2) from the inverter.

Take off the keypad (3).

Remove screws from
the I/O board and install the provided brass standoffs (M3 x L23) to (4), and (M3 \times L17.3) to (5).

■ Mount the Extended I/O (6) and install the removed screw (7) and the included screw (8).

(5) Caution For the following inverters, 0.5 HP and 1.0

 HP, 230V and 460V, it is impossible to do wiring of main source and standard IO after assembly of Extended I/O module. Install the Extended I/O module after wiring of main source and standard IO.■ Install the keypad (9) first, then the Extended I/O cover (10).

- Install the power supply cover (11). And the installation is completed.

(8)

(11)

3 Control Terminal Wiring

3.1 Terminal Block Layout

3.2 Control Terminal Specifications

3.2.1 Input and Output Specification

Function		Label	Name	Description
INPUT	Multi- function terminal configur ation	$\begin{aligned} & \text { P8, P9, } \\ & \text { P10 } \end{aligned}$	Multifunction Input 8~10	Configurable multi-function input terminals.
		CM	Common Sequence	Common terminal for analog and digital inputs and outputs.
		V3	Voltage input for frequency reference input	Used to set a frequency reference via analog voltage input at V3 terminal. - Unipolar: 0-10V (12V Max.) - Bipolar: -10-10V ($\pm 12 \mathrm{~V}$ Max.)
	Analog input configur ation	14	Voltage/ current input for frequency reference input	Used to set a frequency reference via analog current or voltage input at I4 terminal. Switch between current (I4) and voltage (V4) modes with switch (SW2) on the Extended IO module. I4 Mode: - Input current: 4-20mA - Maximum Input current: 24 mA - Input resistance: 249Ω V4 Mode: - Unipolar: 0-10V (12V Max.)
OUTPUT	Analog Output	AO3	Voltage/ Current Output	Set switch (SW3) to select the signal output type (current or voltage) at the AO3 terminal. Output Signal Specifications: - Output current: 0-20mA - Maximum output current: 24 mA - Output voltage: 0-10V - Maximum output voltage/current: $12 \mathrm{~V} / 10 \mathrm{~mA}$ - Factory default output: Frequency
	Digital Output	CM	Common Sequence	Common terminal for analog and digital inputs and outputs.
		A3, C3, B4	Relay 3 output	AC 250 V <1A, DC $30 \mathrm{~V}<1$ A. $A 3$ and $C 3$ contacts are normally open. B3 and C3 contacts are normally closed.
		A4, C4, B4	Relay 4 output	AC 250 V <1A, DC $30 \mathrm{~V}<1$ A. A4 and C4 contacts are normally open. B4 and C4 contacts are normally closed.
	LCD	RJ45		Remote LCD Connection

3.3 NPN/PNP Mode Selection

The Extended IO module supports both NPN (Sink) and PNP (Source) modes for activating the digital inputs at the terminal block. Select the appropriate mode to suit requirements using the NPN/PNP selection switch (SW1) on the board. The following describes each mode along with connection diagrams. Switch position (status) can be viewed at parameter In.99.

3.3.1 NPN (Sink mode)

This is the factory default setting of the board. With SW1 in the NPN position, connect an external contact (switch, relay, transistor) between Px and CM. When the external contact closes, the input is activated (connects the internal 12 V source to CM (sink)). CM is the common ground terminal for all digital input terminals.

3.3.2 PNP (Source Mode)

With SW1 in the PNP position, the input is activated by applying 12 V to the digital input. Connect an external contact (switch, relay, transistor) between 12V (external source) and Px terminal. When the contact closes, the input is activated by applying 12 V to the digital input. When using an external 12 V source, connect the external source (-) to the CM terminal. CM is the common ground terminal for all digital inputs. When using PNP mode, you should apply more than 3 V source for on-state and less than 2 V for off-state.

3.4 Signal (Control) Cable Specifications

Terminals	Signal Cable			
	Without Crimp Terminal Connectors (Bare Wire)		With Crimp Terminal Connectors (Bootlace Ferrule))	
	mm2	AWG	mm2	AWG
P8~P10/CM/V3/I4 /AO3	0.75	18	0.5	20
$\begin{aligned} & \hline \mathrm{A} 3 / \mathrm{B} 3 / \mathrm{C} 3 \\ & \mathrm{~A} 4 / \mathrm{B} 4 / \mathrm{C} 4 \end{aligned}$	1.0	16	1.5	14

- Pre-insulated Crimp Terminal Connectors (Bootlace Ferrule) .

Use pre-insulated crimp terminal connectors to increase reliability of the control terminal wiring. Refer to the specifications below to determine the crimp terminals to fit various cable sizes.

Cable Spec					
Dimensions (inches/mm)					
AWG	mm2	L *	P	dI	D
26	0.25	10.4	$0.4 / 6.0$	$0.04 / 1.1$	$0.1 / 2.5$
	12.4	$0.5 / 8.0$			
22	0.50	12.0	$0.45 / 6.0$	$0.05 / 1.3$	$0.125 / 3.2$
20	0.75	12.0	$0.45 / 6.0$	$0.06 / 1.5$	$0.13 / 3.4$

* If the length (L) of the crimp terminals exceeds $0.5^{\prime \prime}(12.7 \mathrm{~mm})$ after wiring, the control terminal cover may not close fully.

To connect cables to the control terminals without using crimp terminals, refer to the following illustration detailing the correct length of exposed conductor at the end of the control cable.

Note

- While making wiring connections at the control terminals, ensure that the total cable length does not exceed $165 \mathrm{ft}(50 \mathrm{~m})$.
- Ensure that the length of any safety related wiring does not exceed $100 \mathrm{ft}(30 \mathrm{~m})$.
- Ensure that the cable length between an LCD keypad and the inverter does not exceed 10 ft $(3.04 \mathrm{~m})$. Cable connections longer than $10 \mathrm{ft}(3.04 \mathrm{~m})$ may cause signal errors.
- Use ferrite material to protect signal cables from electro-magnetic interference.
- Take care when supporting cables using cable ties, to apply the cable ties no closer than 6 inches from the inverter. This provides sufficient access to fully close the front cover.
- When making control terminal cable connections, use a small flat-tip screw driver (0.1in wide (2.5 mm) and 0.015 in thick (0.4 mm) at the tip).

4 Basic Operations

4.1 Basic Functions

Basic Function	Example
Set Frequency reference source as voltage input.	Configures the inverter to allow input voltages at terminals V3 or V4.
Set Frequency reference source as current input.	Configures the inverter to allow input voltages at terminal I4.
Configure the Analog Output.	Configures the analog output terminal A03.
Configure the Digital Outputs.	Configure the Relay 3 and Relay 4 output functions.
Configure the Digital Inputs.	Configure the functions of Digital Inputs, P8, P9 and P10
Multi-step speed (frequency) configuration.	Configure multi-step frequency operations at the digital input terminals.
Multi-stage Acc/Dec time configuration.	Configure multi-stage acceleration and deceleration times at the digital input terminals.
Multi-function input terminal control configuration.	Enables the user to improve the responsiveness of the multi-function input terminals.

4.2 Setting Frequency Reference

Group	Code	Name	LCD Display	Parameter Setting		Setting Range	Unit
Operation	Frq DRV-07	Frequency reference source	Ref Freq Src	0	KeyPad-1	0-16	
				1	KeyPad-2		
				2	V1		
				4	V2		
				5	I2		
				6	Int 485		
				8	Field Bus		
				9	UserSeqLink		
				12	Pulse		
				13	V3		
				15	V4		
				16	I4		

4.2.1 V3 Terminal as the Frequency Reference Source

You can set and modify a frequency reference using a voltage input at the V 3 terminal. Use voltage inputs ranging from 0 to 10 V (unipolar) for forward only operation. Use voltage inputs ranging from -10 to +10 V (bipolar) for both directions, where negative voltage inputs are used reverse operations.

4.2.1.1 Setting a Frequency Reference for $\mathbf{0} \mathbf{- 1 0 V}$ Input

Set the Frq code in the Operations group to 13 (V3). If using LCD, parameter DRV-07. Set code AO. 02 (V3 Polarity) to 0 (unipolar). If using LCD, APO-02. Use a voltage output from an external source or use the voltage output from the VR terminal on the control board to provide a $0-10 \mathrm{~V}$ input to the V 3 terminal. Refer to the diagrams below for wiring. Scaling of the input voltage is done with AO. 04 ~ AO. 07 (LCD, APO-04 ~ APO-07). View the 0-10V input at parameter AO. 01 (LCD, APO-01).

Group	Code	Name	LCD Display	Parameter Setting		Setting Range	Unit
Operation DRV-07	Frq	Frequency reference source	Freq Ref Src	13	V3	0-16	-
$\begin{aligned} & \text { In } \\ & \text { IN } \end{aligned}$	01	Frequency at maximum analog input	Freq at 100\%	Maximum frequency		0.00- Max. Frequency	Hz
$\begin{aligned} & \text { AO } \\ & \text { APO } \end{aligned}$	01	V3 input monitor	V3 Monitor [V]	0.00		0.00-12.00	V
	02	V3 polarity options	V3 Polarity	0	Unipolar	0-1	-
	03	V3 input filter time constant	V3 Filter	10		0-10000	ms
	04	V3 minimum input voltage	V3 volt x1	0.00		0.00-10.00	V
	05	V3 output at minimum voltage (\%)	V3 Perc y1	0.00		0.00-100.00	\%
APO	06	V3 maximum input voltage	V3 Volt x2	10.00		$0.00-12.00$	V
	07	V3 output at maximum voltage (\%)	V3 Perc y2	100.00		0-100	\%
	08	Rotation direction options	V3 Inverting	0	No	0-1	-
	09	V3 Quantizing level	V3 Quantizing	0.04		$\begin{aligned} & 0.00 *, 0.04- \\ & 10.00 \\ & \hline \end{aligned}$	\%

[^0]

V3 Input Wiring Diagrams

0-10V Input Voltage Setting Details

Code	Description
In. 01 IN-01 Freq at 100\%	Configures the frequency reference at the maximum input voltage to the In. 01 (LCD, IN-01) frequency. A frequency set with code In. 01 (LCD, IN-01) becomes the maximum frequency when the value set in AO. 07 (LCD, APO07) is 100 (\%). - Set code In. 01 to " 60.00 " and use default values for codes AO.01-AO.09. The motor will run at 60.00 Hz when a 10 V input is provided at V 3 . - Set code AO .07 to " 50.00 " (\%) and use default values for codes In.01, AO.01-AO.09. Motor will run at " 30.00 " Hz (50% of the default maximum frequency -60 Hz) when a 10 V input is provided at V 3 .
AO. 01 APO-01 V3 Monitor[V]	Monitor the input voltage at V3.
AO. 03 APO-03 V3 Filter	V3 Filter is a low-pass filter and may be used when there are large variations in the applied reference frequency. The filter passes only the clean input signal. Variations can be mitigated by increasing the time constant, but this will delay the response time when changing the reference frequency. The value t (time) indicates the time required for the frequency to reach 63% of the reference, when external input voltages are provided in multiple steps. V3 input from external source \square
AO. 04 APO-04 V3 Volt x1 AO. 05 APO-05 V3 Perc y1 AO. 06 APO-06 V3 Volt x2 AO. 07 APO-07 V3 Perc y2	These parameters are used to configure the gradient level and offset values of the output frequency based on the input voltage. Frequency reference

\(\left.$$
\begin{array}{l|l}\hline \text { Code } & \text { Description } \\
\hline \text { AO.08 } \\
\text { APO-08 } \\
\text { V3 Inverting }\end{array}
$$ \quad \begin{array}{l}Inverts the direction of rotation. Set this code to 1 (Yes) if you need the

motor to run in the opposite direction from the current rotation.\end{array}\right]\)| Quantizing may be used when the noise level is high in the analog |
| :--- |
| input signal. The VFD output frequency changes in consistent intervals |
| (steps) based on measuring (quantizing) the height (value) of the |
| analog input signal. Delicate control (resolution) of the output |
| frequency is not as good compared to standard resolution of 0.1\%. |
| Parameter values for quantizing refer to a percentage based on the |
| maximum input. Therefore, when AO.09 (APO-09) is set to 1\% of the |
| analog maximum input of 10 V and with a maximum frequency of 60 |
| Hz, the output frequency will increase or decrease by 0.6 Hz |
| per 0.1V difference. |
| With quantizing applied, changes to the VFD output frequency for |
| increasing analog signals and decreasing analog signals are treated |
| differently. When the input signal increases, the output frequency starts |
| increasing when the height becomes equivalent to 3/4 of the |
| quantizing value. From then on, the output frequency increases |
| according to the quantizing value. When the input signal decreases, the |
| output frequency starts decreasing when the height becomes |
| equivalent to $1 / 4$ of the quantizing value. |

4.2.1.2 Setting a Frequency Reference for -10-10V Input

Set the Frq code in the Operations group to 13 (V3). If using LCD, parameter DRV-07. Set code AO. 02 (V3 Polarity) to 1 (bipolar). If using LCD, APO-02. Use a voltage output from an external source to provide a $-10 \mathrm{~V} \sim+10 \mathrm{~V}$ input to the V 3 terminal. Refer to the diagram below for wiring. Scaling of the Neg. 10V input voltage is done with AO. 10 ~ AO. 13 (LCD, APO-10 ~ APO-13). View the input voltage at parameter AO. 01 (LCD, APO-01).

[Bipolar input voltage and output frequency]

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
Operation DRV-07	Frq	Frequency reference source	Freq Ref Src	13	V3	$0-16$

Rotational Directions for Different Voltage Inputs

Command / Voltage Input	Input voltage		
	$\mathbf{0 - 1 0 \mathrm { V }}$	$-10-0 \mathrm{~V}$	
FWD	Forward		Reverse
REV	Reverse	Forward	

-10-10V Voltage Input Setting Details

4.2.2 14 Terminal as the Frequency Reference Source

You can set and modify a frequency reference by applying a current input (0(4)-20mA) to the I4 terminal. Verify switch SW2 is set to the left (I) position (default). Set the Frq (Frequency reference source) code in the Operation group to 16 (I4). If using LCD, parameter DRV-07. Apply 4-20mA input current to I4. Scaling of the input current is done with AO. 24 ~ AO. 27 (LCD, APO- 24 ~ APO-27). View the 4-20mA input at parameter AO. 22 (LCD, APO-22).

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit	
Operation DRV-07	Frq	Frequency reference source	Freq Ref Src	16	I4	$0-16$	-
In/IN	01	Frequency at maximum analog input	Freq at 100%	60.00	$0-$ Maximum	Hz	

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
					Frequency	
$\begin{aligned} & \text { AO } \\ & \text { APO } \end{aligned}$	22	I4 input monitor	I4 Monitor	0.00	0.00-24.00	mA
	23	I4 input filter time constant	I4 Filter	10	0-10000	ms
	24	I4 minimum input current	I4 Curr x1	4.00	0.00-20.00	mA
	25	I4 output at minimum current (\%)	I4 Perc y1	0.00	0-100	\%
	26	I4 maximum input current	I4 Curr x2	20.00	0.00-24.00	mA
	27	I4 output at maximum current (\%)	I4 Perc y2	100.00	0.00-100.00	\%
	28	I4 rotation direction options	I4 Inverting	0 No	0-1	-
	29	I4 Quantizing level	I4 Quantizing	0.04	0*, 0.04-10.00	\%

* Quantizing is disabled if ' 0 ' is selected.

Input Current (I4) Setting Details

Code	Description
$\begin{aligned} & \text { In. } 01 \\ & \text { IN-01 } \\ & \text { Freq at 100\% } \end{aligned}$	Configures the frequency reference at the maximum input current to the In. 01 (LCD, IN-01) frequency. A frequency set with code In. 01 (LCD, IN-01) becomes the maximum frequency when the value set in AO. 27 (LCD, APO-27) is 100 (\%). - Set code In. 01 to " 60.00 " and use default values for codes AO.24-AO.27. The motor will run at 60.00 Hz when a 20 mA input is provided at $I 4$. - Set code AO. 27 to " 50.00 " (\%) and use default values for codes In.01, AO.24AO.26. The motor will run at " 30.00 " Hz (50% of the default maximum frequency -60 Hz) when a 20 mA input is provided at I 4 .
AO. 22 APO-22 I4 Monitor	Monitor input current at I4.
AO. 23 APO-23 I4 Filter	I4 Filter is a low-pass filter and may be used when there are large variations in the applied reference frequency. The filter passes only the clean input signal. Variations can be mitigated by increasing the time constant, but this will delay the response time when changing the reference frequency. The value t (time) indicates the time required for the frequency to reach 63% of the reference, when external input voltages are provided in multiple steps.
AO. 24 APO-24 I4 Curr x1 AO. 25 APO-25 I4 Perc y1	These parameters are used to configure the gradient level and off-set values of the output frequency based on the input current.

Code	Description	
AO.26	Frequency Reference	
APO-26		
I4 Curr x2		
AO.27		
APO-27		
I4 Perc y2	Ao. 25	

4.2.3 I4 (V4) Terminal as the Frequency Reference Source

Set and modify a frequency reference by applying a voltage input ($0-10 \mathrm{~V}$) to the I4 terminal. Set switch SW2 to the right (V) position. Set the Frq (Frequency reference source) code in the Operation group to 15 V4). If using LCD, parameter DRV-07. Apply $0-10 \mathrm{~V}$ input voltage to I 4 . Scaling of the input voltage is done with AO. 16 ~ AO. 19 (LCD, APO-16 ~ APO-19). View the 0-10V input at parameter AO. 14 (LCD, APO-14).

Parameters AO.14-21 are only displayed when I4 (V4) terminal is set to receive a voltage input with switch SW2 and Frq/DRV-07 parameter is set to 15 (V4).

Group	Code	Name	LCD Display	Parameter Setting		Setting Range	Unit
Operation DRV-07	Frq	Frequency reference source	Freq Ref Src	15	V4	0-16	-
$\begin{aligned} & \text { AO } \\ & \text { APO } \end{aligned}$	14	V4 input display	V4 Monitor	0.00		0.00-12.00	V
	15	V4 input filter time constant	V4 Filter	10		0-10000	ms
	16	Minimum V4 input voltage	V4 Volt x1	0.00		0.00-10.00	V
	17	Output\% at minimum V4 voltage	V4 Perc y1	0.00		0.00-100.00	\%
	18	Maximum V4 input voltage	V4 Volt x2	10.00		0.00-10.00	V
	19	Output\% at maximum V4 voltage	V4 Perc y2	100.00		0.00-100.00	\%
	20	Invert V4 rotational direction	V4 Inverting	0	No	0-1	-
	21	V4 quantizing level	V4 Quantizing	0.04		$\begin{aligned} & \hline 0.00^{*}, 0.04- \\ & 10.00 \\ & \hline \end{aligned}$	\%

[^1]
4.3 Analog Output

The analog output terminal (AO3) provides outputs of 0-10V OR (0)4-20 mA current. Switch (SW3) selects a current output ($\mathrm{I}, \mathrm{left}$) or a voltage output (V , right) at the AO3 terminal.

4.3.1 Voltage and Current Analog Output

The analog output (AO3) can represent one of a variety of signals. Parameter AO.30/APO-30 (AO3 Mode) provides 15 choices. Scaling (gain, bias) and filtering can also be applied to the output signal using parameters AO. 31 ~ AO. 33 (APO-31 ~ APO-33). The analog output can be viewed at parameter AO.35/APO-35 (AO3 Monitor).

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
	30	Analog output3	AO3 Mode	0	Frequency	$0-15$

Voltage and Current Analog Output Setting Details

Code	Description		
AO. 30 APO-30 AO3 Mode	Select the type of signal to output. The following examples use a 0-10V output voltage at terminal AO3 representing the type of signal.		
	Setting		Function
	0	Frequency	Outputs operating frequency as a standard. A 10 V output is supplied based on the frequency set at dr. 20 (Max Freq)
	1	Output Current	A 10 V output is supplied based on 200% of inverter rated current (heavy load).
	2	Output Voltage	Sets the output based on the inverter output voltage. 10 V output is made from a set voltage in bA. 15 (Rated Volt). If 0 V is set in bA. $15,200 \mathrm{~V} / 400 \mathrm{~V}$ models output 10 V based on the actual input voltages (240 V and 480 V respectively).
	3	DC Link Volt	Outputs inverter DC link voltage as a standard. Outputs 10 V when the DC link voltage is 410 Vdc for 240 V models, and 820 Vdc for 480 V models.
	4	Torque	Outputs the generated torque as a standard. Outputs 10 V at 250% of motor rated torque.
	5	Ouput Power	Monitors output wattage. 10 V is output at 200% of the inverter rated output.
	6	Idse	Outputs the maximum voltage at 200% of no load current.
	7	Iqse	$\begin{aligned} & \text { Outputs the maximum voltage at } 250 \% \text { of rated } \\ & \text { torque current } \\ & \text { rated torque current } \\ & \quad=\sqrt{\text { rated current }^{2}-\text { no load current }}{ }^{2} \end{aligned}$
	8	Target Freq	Outputs the set frequency as a standard. Outputs 10 V at the maximum frequency (dr.20).
	9	Ramp Freq	Outputs frequency calculated with the Acc/Dec function as a standard. May vary with actual output frequency.
	12	PID Ref Value	Outputs the commanded value (setpoint) of the PID controller. Outputs approximately 6.6 V at 100%.
	13	PID Fdk Value	Outputs feedback amount of the PID controller. Outputs approximately 6.6 V at 100%.
	14	PID Output	Outputs the output value of a PID controller. Outputs approximately 10 V at 100%.
	15	Constant	Outputs AO. 34 (AO3 Const \%) value as a standard.
	The Gain and Bias settings provide scaling adjustment of the analog outputs. The graphs below illustrate adjustments of AO. 31 (AO3 Gain) and AO. 32 (AO3 Bias) percentages and the effect on the analog output (AO3). The X -axis is the \% value of the selected output item and the Y axis is the corresponding output voltage $(0-10 \mathrm{~V})$ at the AO 3 terminal.		

Code	Description
AO. 31 APO-31 AO3 Gain AO. 32 APO-32 AO3 Bias	 Frequency setting example: With AO. 30 set to ' 0 ', using default values of 100% Gain and 0\% Bias and the maximum frequency set at Dr. 20 (Max Freq) is 60 Hz . When the output frequency is 30 Hz , the corresponding X axis value is 50% or 5 V output at the AO 3 terminal. The percent value of the analog output is based on the following equation. $A 03=\frac{\text { Frequency }}{\text { MaxFreq }} \times A 03 \text { Gain }+ \text { A03 Bias }$
AO. 33 APO-33 AO3 Filter	Set filter time constant on analog output.
AO. 34 APO-34 AO13Const \%	If analog output at AO. 30 (AO3 Mode) is set to 15 (Constant), the analog voltage output is dependent on the set parameter values ($0-100 \%$).
A0. 35 APO-35 AO3 Monitor	Monitors the analog output value. Displays the maximum output voltage as a percentage (\%) with 10 V as the standard.

4.4 Digital Outputs

4.4.1 Multi-function Output Relay Settings

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
	30	Fault output item	Trip Out Mode	010^{*}		-
OU OUT	34	Multi-function relay3 setting	Relay 3	29	Trip	-
	35	Multi-function relay4 setting	Relay 4	29	Trip	-

*Displayed as
多 0

Multi-function Output Terminal and Relay Setting Details

Code	Description		
OU. 34 Relay 3	Set relay (Relay 3) output options.		
OU. 35 Relay4	Set relay (Relay 4) output options.		
	Set output terminal and relay functions according to OU. 57 FDT (Frequency), OU. 58 (FDT Band) settings and fault trip conditions.		
	Setting		Function
	0	None	No output signal.
	1	FDT-1	Relay changes state when the output frequency reaches the reference frequency within frequency bandwidth / 2. Conditions are: Absolute value (Ref frequency output frequency) <= frequency bandwidth/2 (OU. 58 / 2). Example: Frequency Reference is 20 Hz . Bandwidth (OUT-58) is 10 Hz . Relay changes state at 15 Hz .
	2	FDT-2	Relay changes state when the reference frequency and detection frequency (OU.57) are equal and fulfills FDT-1 condition at the same time.

Code	Description		
			Conditions are: [Absolute value (Ref frequency detection frequency) < frequency bandwidth/2] \& [FDT-1]. Example: Frequency Reference is 30 Hz . Detection frequency (OU.57) is 30 Hz . Frequency bandwidth (OU.58) is 10 Hz . Relay changes state at 25 Hz .
	3	FDT-3	Relay changes state when the output frequency is within the frequency bandwidth (OU.58) centered around the detection frequency (OU.57). Conditions are: Absolute value (output frequencyoperating frequency) < frequency bandwidth/2. Example: Detection frequency (OU.57) is 30 Hz . Frequency bandwidth (OU.58) is 10 Hz . Relay changes state when the output frequency is between 25 Hz . and 35 Hz .
	4	FDT-4	Relay changes state based on separate conditions for acceleration and deceleration. In acceleration: Operation frequency \geqq Detected frequency In deceleration: Operation frequency>(Detected frequency-Detected frequency width/2). Example: Detection frequency (OU.57) is 30 Hz . Frequency bandwidth (OU.58) is 10 Hz . During acceleration, relay changes state when output frequency reaches detection frequency. During deceleration, the relay changes state when the output frequency is below the frequency bandwidth/2.

Code	Description		
	5	Overload	Relay changes state when inverter trips on motor overload.
	6	IOL	Relay changes state when inverter trips on inverter overload. IOL is based on inverse time characteristics.
	7	Underload	Relay changes state when inverter trips on motor underload.
	8	Fan Warning	Relay changes state when a fan warning occurs.
	9	Stall	Relay changes state when the inverter detects a motor stall condition.
	10	Over voltage	Relay changes state when the inverter trips on Over Voltage.
	11	Low Voltage	Relay changes state when the inverter trips on Low Voltage.
	12	Over Heat	Relay changes state when the inverter trips on Overheat.
	13	Lost command	Relay changes state when the inverter trips on Lost Command. Lost command includes lost reference frequency from: Analog input RS-485 communication Option Cards (Extended I/O and communications)
	14	RUN	Relay changes state when a run command is applied and the inverter outputs voltage. There is no output when reference frequency is at zero or during DC Braking.
	15	Stop	Relay changes state when a stop command is applied and when there is no inverter output voltage.
	16	Steady	Relay changes state during steady state operation.
	17	Inverter line	Used in combination with "Comm Line" (Bypass) function. Relay maintains state while the motor is driven by the inverter output.
	18	Comm line	Commercial Line: Relay changes state when a digital input set to "exchange" function is applied. Use external logic and components to bypass inverter.

Code	Description		
	19	Speed search	Relay changes state during speed search operation.
	22	Ready	Relay changes state when the inverter is in stand by operation and ready to receive a run command.
	28	Timer Out	Used in combination with a digital input set to "Timer In" function. The relay changes state when the digital input is activated and after the time delay settings.
	29	Trip	Relay changes state after a fault condition.
	31	DB Warn \%ED	Relay changes state when the Dynamic Brake Duty Cycle (Pr.66) is exceeded.
	34	On/Off Control	Relay changes state based on the analog input signal levels set with OU.67~OU.69.
	35	BR Control	Used for external electro-mechanical brake control. Relay operates based on Ad.41~Ad. 47 settings.
OU. 41 OUT-41 DO Status	Used	to check On D R4, R3, X, X	ff state of each DO by bit representation. Led Display as

4.4.2 Fault Output using Output Relays

With Relay 3 and/or Relay 4 set to 23 (Trip), OU. 30 (Fault Output Mode) can further define relay activation during low voltage faults, all faults and auto restart functions. Additionally, On and Off delay times can also be applied to the fault output when set to 23 (Trip).

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit	
	30	Fault trip output mode	Trip Out Mode	010	-	bit	
OU OUT	34	Multi-function relay3 setting	Relay 3	29	Trip	-	-
	53	Multi-function relay4 setting	Relay 4	29	Trip	-	-
	Fault trip output on delay	TripOut On Dly	0.00	$0.00-100.00$	sec		
	54	Fault trip output off delay	TripOut Off Dly	0.00	$0.00-100.00$	sec	

Fault Output Relays - Setting Details

Code	Description				
OU. 30 OUT-30 Trip Out Mode	Bit On/Off representation on display.				
	Item		bit on		bit off
	LED K	ypad	8		8
	LCD k	ypad	\square		\square
	Set OU.34, and/or OU. 35 (Relay3 and/or Relay4) to 23 (Trip). When a fault occurs, the output will be activated. Output activation can be set based on trip type per the table below.				
	Setting			Function	
	bit3	bit2	bit1		
			\checkmark	Operates w	w voltage faults occur
		\checkmark		Operates w occur	ults other than low voltage
	\checkmark			Operates w	to restart fails (Pr. 08-Pr.09)
OU. 34 Relay 3	Configure Relay 3 output function.				
OU. 35 Relay 4	Configure Relay 4 output function.				
OU. 53 TripOut OnDly, OU. 54 TripOut OffDly	If a fault occurs, the relay output operates after the time delay set in OU.53. After a reset, the relay is initialized after the time delay set in OU.54.				

4.4.3 Relay Output Delay Time Settings

Set On/Off delay times to adjust the relay operation time. The delay times set in OU. 50 and OU. 51 will be applied to all Relays (1,3 and 4) and Q1 except when any are set to (23) Trip. Additionally, a NO or NC setting can be individually applied to the outputs.

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
$\begin{aligned} & \text { OU } \\ & \text { OUT } \end{aligned}$	50	Multi-function output On delay	DO On Delay	0.00	0.00-100.00	s
	51	Multi-function output Off delay	DO Off Delay	0.00	0.00-100.00	s
	52	Select multi-function output terminal	$\begin{aligned} & \begin{array}{l} \text { DO NC/NO } \\ \text { Sel } \end{array} \\ & \hline \end{aligned}$	00*	00-11	bit

* Displayed as

switches between Extended I/O module and the main control board outputs (Relay1 and Q1).

Output Relay Delay Time and NC/NO Setting Details

Code	Description
OU.50 OUT-50 DO On Delay	When Relay3 or Relay4 are operated based on their OU.34 and OU.35 settings, they will activate after the delay time set at OU.50.
OU.51 OUT-51 DO Off Delay	When Relay3 or Relay4 are initialized (reset or off signal occurs), they will de- activate after the time delay set at OU.51.
	Run cmd Multi-function output

Each output can be set to operate as Type A or Type B. Type A is deenergized in its normal state. Type \mathbf{B} is energized in its normal state. By setting the relevant bit to 0 (off), it will operate as Type A (the NO contact is Open) or setting it to 1 (on) it will operate as Type B (the NO contact is Closed). Shown below in the table are Relays 1, 3 and 4 and Q1.

OU. 52
OUT-52
DO NC/NO Sel

* Displayed as 11 LED keypad. On the LED Keypad, pushing the left/right arrow buttons switches between the main control board outputs (Relay1 and Q1) and the Extended I/O module (Relays 3 and 4).

4.4.4 Multi-Function Relay On/Off Control

This feature operates a digital output (Relay3 or Relay4) based on the analog input level. Set either relay to 34 (On/Off Control). Set the On/Off Control Source (OU.67) and set the On level (OU.68) to activate the output and the Off level (OU.69) to de-activate the output.

Group	Code	Name	LCD Display	Parameter Setting		Setting Range	Unit
OU OUT	67	Output terminal on/off control mode	On/Off Ctrl Src	1	V1	$0 \sim 10$	-
	68	Output terminal on level	On-Ctrl Level	90.00		Output terminal off level- 100.00\%	\%
	69	Output terminal off level	Off-Ctrl Level	10.00		0.00-Output terminal on level	\%
OU	34	Multi-function Relay 3	Relay 3		$\begin{array}{\|l\|l} \hline 34 & \begin{array}{l} \text { On/Off } \\ \text { Control } \end{array} \\ \hline \end{array}$		-
OUT	35	Multi-function Relay 4	Relay 4				

Multi-Function Relay On/Off Control - Setting Details

Code	Description
OUT-67 On/Off Ctrl Src	Select an analog input to be used for On/Off control.
OUT-68	
On-Ctrl Level,	Set the On/Off levels for the output (Relay 3 or Relay 4).
OUT-69	
Off-Ctrl Level	

Analog input

Multi-function relay output

4.5 Digital Inputs

4.5.1 Setting Multi-Step Frequencies

Multi-step operations (Fixed Speed Inputs) can be assigned to the Px terminals. Steps 1 through 7 can be configured using (3) digital input terminals. Step 0 uses the frequency reference source set with Frq (LCD DRV-07). Set P8, P9 and P10 terminals (In.72, In.73, In.74) to 7 (Speed-L), 8 (Speed-M) and 9 (Speed-H). These are recognized as binary inputs ($000 \sim 111$) and work in combination with Fx or Rx run commands. The VFD operates according to the frequencies set with parameters St1-St3 and bA.53-bA. 56 (LCD BAS-50-56) and the binary input combinations.

Group	Code	Name	LCD Display	Parameter Setting		Setting Range	Unit
Operations or BAS	$\begin{array}{\|l\|} \hline \text { St1-St3 } \\ \text { or } \\ 50-52 \\ \hline \end{array}$	Multi-step frequency 1-3	Step Freq - 1-3	-		0-Maximum frequency	Hz
$\begin{aligned} & \hline \mathrm{bA} \\ & \mathrm{BAS} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 53-56 \\ 50-56 \end{array}$	Multi-step frequency 4-7	Step Freq-4-7	-		0-Maximum frequency	Hz
	72-74	Px terminal configuration	$\begin{aligned} & \text { Px Define (Px: } \\ & \text { P8-P10) } \end{aligned}$	7 8 9	Speed-L Speed-M Speed-H	0-54	-
IN	89	Multi-step command delay time	InCheck Time	1		1-5000	ms

Multi-step Frequency Setting Details

Code	Description
Operation group St 1-St3	Configure multi-step frequency 1-3. If an LCD keypad is used, BAS-50~BAS-52 are used instead of St1-St3 (multi- Step Freq - 1-3
step frequency 1-3).	

4.5.2 Multi-step Acc/Dec Time Configuration

Digital input terminals can be configured for different Acc and Dec times. Up to 7 acceleration times and 7 deceleration times can be set. Choose (up to 3) digital input terminals (P8 ~ P10) and set the corresponding parameters (IN-72~IN-74) to 11 (XCEL-L), 12 (XCEL-M) and 49 (XCEL-H). These are recognized as binary inputs ($000 \sim 111$). Acc times and Dec times are set with BAS-70 through BAS-83.

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
Operation	ACC	Acceleration time	Acc Time	20.0	$0.0-600.0$	sec
DRV	03			nec		

Acc/Dec Time Configuration - Setting Details

4.5.4 Stopping the Acc/Dec Operation

Configure a digital input terminal to stop acceleration or deceleration and operate the inverter at a fixed frequency.

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
In IN	$65-74$	Px terminal configuration	Px Define (Px: P1- P10)	25	XCEL Stop	$0-54$

4.5.5 Multi-function Input Terminal Control

Each of the digital inputs can have an On Delay time and an Off Delay time assigned to them. This filter time constant will be applied to all the digital inputs that are selected (enabled) with parameter In. 84. Longer time settings will delay the response of the input. Additionally, the digital inputs can be configured independently as a normally open input or a normally closed input with parameter In. 87 (DI NC/NO Sel). The status (Opened or Closed) of the digital inputs can be viewed at In. 90 .

Group	Code	Name	LCD Display	Parameter Setting	Setting Range	Unit
$\begin{aligned} & \text { In } \\ & \text { IN } \end{aligned}$	84	Multi-function input terminal On filter selection	DI Delay Sel	$\begin{array}{\|ccc} \hline 00000^{*} \\ \text { P5<-P1 } \\ 0 & 0 & 0 \\ \text { P10 P9 P8 } \end{array}$	$\begin{aligned} & 000 \text { XXX0 } 0000 \\ & \text { ~ } 111 \text { XXX1 } 1111 \end{aligned}$	bit
	85	Multi-function input terminal On filter	DI On Delay	10	0-10000	ms
	86	Multi-function input terminal Off filter	DI Off Delay	3	0-10000	ms
	87	Multi-function input terminal selection	DI NC/NO Sel	$\begin{gathered} 00000^{*} \\ \text { P5<-P1 } \\ 0 \end{gathered} 0 \quad 0 \quad 0$	$\begin{aligned} & 000 \text { XXX0 } 0000 \\ & \sim \\ & 111 \text { XXX1 } 1111 \end{aligned}$	-
	90	Multi-function input terminal status	DI Status	$\begin{gathered} \hline 00000^{*} \\ \text { P5<-P1 } \\ 0 \\ 0 \end{gathered} 00$	$\begin{aligned} & 000 \text { XXX0 } 0000 \\ & \sim \\ & 111 \text { XXX1 } 1111 \end{aligned}$	-

*The LED (7-Segment) display shows the first 5 terminals (P5<-P1) as D
The Extended IO terminals (P10, P9, P8) are displayed by pressing the left or right arrow buttons and are shown as 10 IN . The LCD display shows all inputs.

Multi-function Input Terminal Control - Setting Details

5 Keypad Parameters for the Extended I/O Module

LED Display AO.XX Group, LCD Display APO Group
Keypad Parameters in the Extended I/O module are displayed when the Extended I/O module is installed. Set the parameters according to your operating requirements. The following messages may be displayed during programming of parameters.

- rd: Re-Do - value or selection not allocated in software.
- OL: Overlap - An input is already programmed to the same function.
- no: Not Allowed - The selection or set value is not allowed.

Parameters shaded in gray will be displayed when a related parameter or switch has been selected. The column labeled "Property" shows whether the parameter can be changed while the VFD is running and which display (LED or LCD or both) shows the parameter:
O: Write enabled during run, X: Write Disabled during run, "-": Read only.
7-7 segment LED Display, L-LCD Keypad/Display, A-Common to LED and LCD

5.1 AO, APO Group - Extended IO Group

Code	Comm. Address	Name	LCD Display	Setting Range	Initial Value	Property*
00	-	Jump Code	Jump Code	1~99	0	O/A
01	Oh1A01	V3 input voltage display	V3 Monitor[V]	-12.00~ 12.00[V]	0.00	-/A
02	Oh1A02	V3 input polarity selection	V3 Polarity	0 Unipolar 1 Bipolar	0:Unipola	X/A
03	0x1A03	Time constant of V3 input filter	V3 Filter	$0 \sim 10000[\mathrm{~ms}]$	10	O/A
04	0x1A04	V3 Minimum input voltage	V3 Volt x1	$0.00 \sim 10.00[\mathrm{~V}]$	0.00	O/A
05	0x1A05	V3 output at Minimum voltage (\%)	V3 Perc y1	$0.00 \sim 100.00$ [\%]	0.00	O/A
06	0x1A06	V3 Maximum input voltage	V3 Volt x2	$0.00 \sim 12.00[\mathrm{~V}]$	10.00	O/A
07	0x1A07	V3 output at Maximum voltage (\%)	V3 Perc y2	$0.00 \sim 100.00$ [\%]	100.00	O/A
08	0x1A08	V3 rotation direction change	V3 Inverting	0 No 1 Yes	0:No	O/A
09	0x1A09	V3 quantization level	V3 Quantizing	$\begin{aligned} & \hline 0.00, \\ & 0.04 \sim 10.00[\%] \end{aligned}$	0.04	X/A
10	0x1A0A	V3 Minimum input voltage	V3-Volt x1'	-10.00~ 0.00[V]	0.00	O/A
11	0x1A0B	V3 output at Minimum voltage	V3-Perc y1'	-100.00~0.00[\%]	0.00	O/A

Code	Comm. Address	Name	LCD Display	Setting Range	Initial Value	Property*
		(\%)				
12	0x1A0C	V3 Maximum input voltage	V3-Volt x2'	-12.00~0.00[V]	-10.00	O/A
13	Ox1A0D	V3 output at Maximum voltage (\%)	V3-Perc y2'	-100.00~0.00[\%]	-100.00	O/A
14(1)	0x1A0E	V4 input voltage display	V4 Monitor[V]	0.00~12.00[V]	0.00	-/A
15	0x1AOF	Time constant of V4 input filter	V4 Filter	0~10000[ms]	10	O/A
16	0x1A10	V4 Minimum input voltage	V4 Volt x1	0.00~10.00[V]	0.00	O/A
17	0x1A11	V4 output at Minimum voltage (\%)	V4 Perc y1	0.00~100.00[\%]	0.00	O/A
18	0x1A12	V4 Maximum input voltage	V4 Volt x2	0.00~10.00[V]	10	O/A
19	0x1A13	V4 output at Maximum voltage (\%)	V4 Perc y2	0.00~100.00[\%]	100.00	O/A
20	0x1A14	V4 rotation	V4 Inverting	0 No	0:No	O/A
20	Ox1A14	direction change	V4 Inverting	1 Yes	O.No	O/A
21	0x1A15	V4 quantization level	V4 Quantizing	$\begin{array}{\|l\|} \hline 0.00, \\ 0.04 \sim 10.00[\%] \\ \hline \end{array}$	0.04	O/A
22	0x1A16	I4 input current display	I4 Monitor[mA]	0~24[mA]	0.00	-/A
23	0x1A17	I4 input filter time constant	14 Filter	0~10000[ms]	10	O/A
24	0x1A18	I4 minimum input current	I4 Curr x1	0.00~20.00[mA]	4.00	O/A
25	0x1A19	I4 output at Minimum current (\%)	14 Perc y1	0.00~100.00[\%]	0.00	O/A
26	0x1A1A	I4 maximum input current	I4 Curr x2	0.00~24.00[mA]	20.00	O/A
27	0x1A1B	I4 output at Maximum current (\%)	14 Perc y2	0.00~100.00[\%]	100.00	O/A
28	0x1A1C	Changing rotation direction of $I 4$	I4 Inverting	0 No	0:No	O/A
				1 Yes		
29	0x1A1D	I4 quantization level	I4 Quantizing	$\begin{aligned} & \hline 0.00, \\ & 0.04 \sim 10.00[\%] \end{aligned}$	0.04	O/A
30	0x1A1E	Analog output 3 item	AO3 Mode	0 Frequency	0 : Frequenc y	O/A
				11 Output Current		
				2 Output Voltage		
				3 DCLink		

Code	Comm. Address	Name	LCD Display	Setting Range		Initial Value	Property*
					Voltage		
				4	Torque		
				5	Output Power		
				6	Idse		
				7	Iqse		
				8	Target Freq		
				9	Ramp Freq		
				10	Speed Fdb		
				12	PID Ref Value		
				13	PID Fdb Value		
				14	PID Output		
				15	Constant		
31	0x1A1F	Analog output 3 gain	AO3 gain		$0.0 \sim 1000.0$	100.0	O/A
32	0x1A20	Analog output 3 bias	AO3 Bias		.0~100.0[\%]	0.0	O/A
33	0x1A21	Analog output 3 filter	AO3 Filter		0000[ms]	5	O/A
34	0x1A22	Analog constant output 3	AO3 Const \%		100.0[\%]	0.0	O/A
35	0x1A23	Analog output 3 monitor	AO3 Monitor		1000.0[\%]	0.0	-/A
				00	NPN, V4		
36	0x1A24	Ext IO Switch State	Ext IO Switch	01	NPN,14	01	
		Ext IO Switch State	Ext IO Switch	10	PNP, V4	01	-/A
				11	PNP,14		
37	0x1A25	Ext I/O SW Ver	Ext I/O SW Ver	-		1.00	-/A

(1) Parameters AO. 14 ~ AO. 21 displayed when switch SW2 is set to the right (V) position. Apply a voltage input $(0-10 \mathrm{~V})$ to the 14 terminal.

5.2 Additional Extended IO Parameters

Additional parameters and parameter settings in other parameter groups which are related to the Extended IO module are shown in the below table. These parameters and/or settings are shaded in dark grey. For a complete list of all VFD parameters refer to the "S" \& "SW" Series Instruction Manual, 890049-07-00.

Code	Comm. Address	Name	Keypad Display	Setting Range		Initial Value	Property*******)
Frq DRV-07	Oh1F04	Frequency reference source	Frq Freq Ref Src	0	Keypad-1	0: Keypad-1	$\begin{aligned} & \mathrm{X} / 7 \\ & \mathrm{X} / \mathrm{L} \end{aligned}$
				1	Keypad-2		
				2	V1		
				4	V2		
				5	I2		
				6	Int 485		
				8	Field Bus		
				12	Pulse		
				13	V3		
				15	V4		
				16	I4		
dr. 08	Oh1108	Torque	Trq Ref Src	0	Keypad-1	0: Keypad-1	X/A
DRV-08		reference		1	Keypad-2		
		setting		2	V1		
				4	V2		
				5	I2		
				6	Int 485		
				8	FieldBus		
				12	Pulse		
				13	V3		
				15	V4		
				16	I4		
bA. 02	Oh1205	Frequency	Freq Aux	0	Keypad-1	0: Keypad-1	X/A
BAS-02		reference	$\left(2^{\text {nd }}\right) \mathrm{Src}$	1	Keypad-2		
		source		2	V1		
				4	V2		
				5	I2		
				6	Int 485		
				8	Field Bus		
				12	Pulse		
				13	V3		
				15	V4		
				16	14		
bA. 03	Oh1201	Frequency	Aux Ref	0	None	0: None	X/A
BAS-03		reference		1	V1		
				3	V2		
				4	I2		
				6	Pulse		
				7	V3		

Code	Comm. Address	Name	Keypad Display	Setting Range		Initial Value	Property*

Code	Comm. Address	Name	Keypad Display	Setting Range	Initial Value	Property ${ }^{\text {a }}$
				5 BX		
				6 JOG		
				7 Speed-L		
				Speed-M		
				9 Speed-H		
				11 XCEL-L		
				12 XCEL-M		
				13 RUN Enable		
				14 3-Wire		
				15 2nd Source		
				16 Exchange		
				17 Up		
				18 Down		
				20 U/D Clear		
				21 Analog Hold		
				22 I-Term Clear		
				23 PID Openloop		
				24 P Gain2		
				25 XCEL Stop		
				26 2nd Motor		
				38 Timer In 40		
				40 dis Aux Ref		
				46 FWD JOG		
				49 XCEL-H		
				50 User Seq		
				51 Fire Mode		
$\begin{aligned} & \text { In. } 84 \\ & \text { IN- } 84 \end{aligned}$	Oh1554	Multifunction input terminal On	DI Delay Sel	$\begin{array}{ccc} 00000^{*} \\ \text { P5 <-P1 } \\ 0 & 0 & 0 \\ \text { P10 P9 P8 } \end{array}$	000 XXX0 0000 ~ 111 XXX1	O/A
		filter		0 Disable(Off)	1111	
		selection		1 Enable(On)		
$\begin{aligned} & \text { In. } 85 \\ & \text { IN- } 85 \end{aligned}$	Oh1555	Multifunction input terminal On filter	DI On Delay	0-10000(ms)	10	O/A
$\begin{aligned} & \text { In. } 86 \\ & \text { IN- } 86 \end{aligned}$	Oh1556	Multifunction input terminal Off filter	$\begin{array}{\|l\|l\|} \text { DI Off } \\ \text { Delay } \end{array}$	0-10000(ms)	3	O/A
$\begin{aligned} & \text { In. } 87 \\ & \text { IN- } 87 \end{aligned}$	Oh1557	Multifunction input contact	$\begin{array}{\|l\|} \hline \text { DI } \\ \mathrm{NC} / \mathrm{NO} \end{array}$ Sel	$\begin{gathered} 00000^{*} \\ \text { P5<-P1 } \\ 0 \quad 0 \quad 0 \end{gathered}$	$\begin{aligned} & 000 \text { XXX0 } \\ & 0000 ~ \end{aligned}$	X/A

Code	Comm. Address	Name	Keypad Display	Setting Range		Initial Value	Propaty

Code	Comm. Address	Name	Keypad Display	Setting Range		Initial Value	Property*
				Fire	Mode		
$\begin{aligned} & \text { OU. } 30 \\ & \text { OUT-30 } \end{aligned}$	Oh161E	Fault output item	Trip Out Mode	000-	-111	010^{1}	O/A
				Low	voltage		
				Any faults other than low voltage			
				Automatic			
$\begin{aligned} & \text { OU. } 41 \\ & \text { OUT-41 } \end{aligned}$	Oh1629	Multi-function output monitor	DO Status			00	-/A
$\begin{aligned} & \text { OU. } 50 \\ & \text { OUT-50 } \end{aligned}$	Oh1632	Multi-function output On delay	DO On Delay	0.00-100.00(s)		0.00	O/A
OU. 51 OUT-51	Oh1633	Multi-function output Off delay	DO Off Delay	0.00-100.00(s)		0.00	O/A
$\begin{aligned} & \text { OU. } 52 \\ & \text { OUT-52 } \end{aligned}$	Oh1634	Multi-function output contact selection	DO NC/NO Sel	R4, R3 <->Q1, R1		00^{2}	X/A
					A contact (NO)		
					B contact (NC)		
$\begin{aligned} & \text { OU. } 53 \\ & \text { OUT-53 } \end{aligned}$	Oh1635	Fault output On delay	TripOut OnDly	0.00-100.00(s)		0.00	O/A
$\begin{aligned} & \text { OU. } 54 \\ & \text { OUT-54 } \end{aligned}$	Oh1636	Fault output Off delay	TripOut OffDly	0.00-100.00(s)		0.00	O/A
OU. 55 OUT-55	h1637	Timer On delay	TimerOn Delay	0.00-100.00(s)		0.00	O/A
$\begin{aligned} & \hline \text { OU. } 56 \\ & \text { OUT-56 } \end{aligned}$	Oh1638	Timer Off delay	TimerOff Delay	0.00-100.00(s)		0.00	O/A
$\begin{aligned} & \text { OU. } 57 \\ & \text { OUT-57 } \end{aligned}$	Oh1639	Detected frequency	FDT Frequency	0.00-Maximum frequency(Hz)		30.00	O/A
$\begin{aligned} & \text { OU. } 58 \\ & \text { OUT-58 } \end{aligned}$	Oh163A	Detected frequency band	FDT Band	0.00-Maximum frequency (Hz)		10.00	O/A
$\begin{aligned} & \text { OU. } 67 \\ & \text { OUT-67 } \end{aligned}$	Oh1342	Output contact On/Off control	On/Off Ctrl Src	0	None	0:None	X/A
				1	V1		
				3	V2		
				4	I2		

[^2]2 Displayed as 000 on the LED Keypad. On the LED Keypad, pushing the left/right arrow buttons switches between the main control board outputs (Relay1 and Q1) and the Extended I/O module (Relays 3 and 4).

Code	Comm. Address	Name	Keypad Display	Setting Range		Initial Value	Propaty'

[^0]: * Quantizing is disabled if ' 0 ' is selected.

[^1]: * Quantizing is disabled if ' 0 ' is selected.

[^2]: 1 The initial value 010 will be displayed on the keypad as 000100

