

BENSHAW POWERPRO" MICRO - GENERAL PURPOSE DRIVES

PREFACE

Thank you for purchasing the Benshaw PowerPro ${ }^{\text {Tm }}$ Micro General Purpose Drive. The Benshaw PowerPro ${ }^{T M}$ Micro Drive series is a powerful general-purpose single-phase and three-phase AC drive. It features a compact book-shelf design to maximize power density and minimize mounting footprint. The drive supports both 150% overload for 60 seconds and 180% overloads for 2 seconds. Using advanced sensorless vector and V/F control technology, the Micro AC Drive delivers superb speed control and stability. It provides a wide range of user-programmable features, including integrated PLC and wide range of diagnostic and protection parameters. The single-phase drives have a standard built-in C3 filter to meet the EN61800-3 C2 transmission requirement of CE certification. They can be used for control of fans, pumps, small compressors and other types of automated applications.

FIRST USE

Read this manual carefully if you are using the Benshaw PowerPro ${ }^{\text {TM }}$ Micro General Purpose Drive for the first time. If you have questions about its functions or performance, please contact our technicians for help.

APPROVALS

Certification marks on the product nameplate indicate compliance with the corresponding certificates and standards.

Certification	Mark	Directive Name		Standard
CE		EMC directives	$2014 / 30 /$ EU	EN 61800-3
	C	LVD directives	$2014 / 35 /$ EU	EN 61800-5-1
TUV		RoHS directives	$2011 / 65 /$ EU	EN 50581
		-		EN 61800-5-1

Notes:
The above EMC directives are complied with only when the EMC electric installation requirements are strictly observed.
Machines and devices used in combination with this drive must also be CE certified and marked. The integrator who integrates the drive with the CE mark into other devices has the responsibility of ensuring compliance with CE standards and verifying that conditions meet European standards.
The installer of the drive is responsible for complying with all relevant regulations for wiring, circuit fuse protection, earthing, accident prevention and electromagnetic (EMC) regulations. In particular, fault discrimination for preventing fire risk and solid earthing practices must be adhered to for electrical safety (also for good EMC practices).
For more information on certification, consult our distributor or sales representative.

REVISION HISTORY

Date	Version	Change Description
Mar 2019	V0.0	N/A

CONTENTS

Preface 2
Revision History 2
Safety Information 4
1 Product Information 8
1.1 Nameplate and Designation Rule 8
1.2 General Specifications 9
1.3 Technical Specifications 10
1.4 Environment 11
1.5 EMC Filter 11
2 Mechanical Installation and Wiring 13
2.1 Mechanical Installation 13
2.2 Wiring 16
3 Operating Panel 20
3.1 Familiarize Yourself with the Operating Panel 20
4 Quick Setup 22
4.1 Setup Flowchart 22
5 Parameter Table 28
5.1 Introduction 28
5.2 Standard Parameters 28
5.3 Monitoring Parameters 51
6 Troubleshooting 52
6.1 AC Drive Performance Fine Tuning 52
6.2 Fault Codes and Troubleshooting 53

SAFETY INFORMATION

SAFETY PRECAUTIONS

Read and follow the safety precautions when installing, operating and maintaining the product.
To ensure your safety and prevent damage to equipment, follow the marks on the product and safety precautions in this manual when installing, operating and maintaining the product.

1. "CAUTION", "WARNING" and "DANGER" items in the manual do not indicate all safety precautions that need to be followed; instead, they supplement the safety precautions.
2. Use this product in environment meeting the design and specification requirements; otherwise, a fault may occur. Noncompliancecaused malfunction or damage to parts are not covered in the product quality warranty.
3. Benshaw is not legally responsible for any personal safety accident or property losses caused by improper operation of this product.

SAFETY GRADE AND DEFINITION

4 DANGER

"DANGER" indicates a safety precaution that will result in death or serious injury if not followed.

4 WARNING "WARNING" indicates a safety

 precaution that may result in death or serious injury if not followed.
CAUTION

"CAUTION" indicates a safety precaution that may result in minor injury or equipment damage if not followed.

UNPACKING AND CHECKING

```
CAUTION
```

- Before unpacking, check whether the outer package is intact, damaged, wet, damp or deformed.
- Open the package in sequence. During unpacking, check whether the product and its accessories have any damage, corrosion or dents on the surface.
- Check the quantity of the product and accessories to ensure that it matches the packing list.

WARNING

- Do not install the product and/or its accessories if you find that the product and/or its accessories have any damage or corrosion.
- Do not install the product if there is water inside the product or any of its parts are missing or damaged.
- Do not install the product if the product name is inconsistent with that on the packing list.

DURING STORAGE AND TRANSPORTATION

CAUTION

- Store and transport the product according to its storage and transportation conditions. The storage temperature and humidity shall meet relevant requirements.
- Do not store or transport the product in places with direct sunlight, strong electric field, strong magnetic field or strong vibration or places that are wet from rain or splashing water.
- Do not store the product for more than one year. Capacitors will need to be "reformed" if they have not been used in more than a year. Take stricter prevention measures and perform the necessary inspection if the storage time is extensive.
- Pack the product properly before transportation. The product must be placed in a sealed box for long-distance transportation.
- Do not transport the product together with any equipment or articles that may affect or impair the product.

WARNING

- Be sure to use professional loading and unloading equipment to move large or heavy equipment and products.
- When moving the product by hand, grip the product case tightly to avoid dropping product parts, causing damage.
- Be sure to move the product carefully, paying attention to your step to prevent trip or fall and risk of injury to you or damage to the product.
- When the equipment is lifted by lifting gear, do not stand in the area below the lifting area.

DURING INSTALLATION

WARNING

- Before installation, carefully read the product manual and safety precautions.
- Do not modify the product.
- Do not unscrew the fixing bolts or bolts with red marks.
- Do not install this product in a place with a strong electric field or strong electromagnetic interference.
- When the product is installed in a cabinet or terminal equipment, the cabinet or terminal equipment shall be provided with the corresponding protective devices such as fireproof enclosure, electrical enclosure and mechanical enclosure. The protection grade shall comply with relevant UL/IEC standards and local laws and regulations.

CAUTION

- Product instalation, wiring, maintenance, inspection and component replacement should only be performed by professionals trained in electrical equipment and having knowledge of electrical equipment.
- Installers must be familiar with product installation requirements and related technical data.
- When you need to install equipment creating strong electromagnetic interference, such as transformers, install the shield protection device to prevent the product from malfunction.

DURING WIRING

DANGER

- Non-professionals are strictly prohibited from equipment installation, wiring, maintenance, inspection or component replacement.
- Do not perform wiring while the power is turned on. Failure to comply may result in electric shock.
- Before wiring, cut off the power to all equipment. Residual voltage remains in the internal capacitor of the equipment after the power is cut off. Wait for at least 10 minutes before wiring and other operations.
- Be sure equipment and the product are properly grounded. Failure to comply may result in electric shock.

SAFETY INFORMATION

DURING WIRING (CONTINUED)

CAUTION

- Follow the electro-static discharge (ESD) precautions and wear an ESD wrist strap to avoid damage to the equipment or circuit inside the product.
- It is prohibited to connect the input power to the output terminal of the equipment or product; otherwise, the equipment may be damaged or fire may occur.
- When connecting the drive to the motor, be sure that the phase sequence of the drive and the motor terminal are consistent, so as to avoid reverse rotation of the motor.
- The cables used for wiring must meet relevant diameter and shielding requirements, and the shielding layer of the shielding cables must be reliably grounded at a single terminal.
- After wiring is complete, be sure there are no screws or bar cables left inside the equipment and product.

DURING POWER-ON

DANGER

- Before power-on, make sure the equipment and product are installed properly, the wiring is securely connected and the motor unit is allowed to restart.
- Before power-on, make sure the power supply meets the equipment requirements to avoid damage to the equipment or fire.
- During power-on, mechanical devices of the equipment or product may suddenly move. Stay away from the mechanical devices.
- After power-on, do not open the equipment cabinet door or product protection cover; to avoid the danger of electric shock.
- It is prohibited to touch any terminal of the equipment when power is on; otherwise, there is danger of electric shock.
- It is prohibited to dismantle any device or parts of the equipment and product when the power is on; otherwise, there is danger of electric shock.

DURING RUNNING

DANGER

- It is prohibited to touch any terminal of the equipment when it is running; otherwise, there is danger of electric shock.
- It is prohibited to dismantle any device or parts of the equipment and product when the equipment is running; otherwise, there is danger of electric shock.
- It is prohibited to touch the equipment closure, fan or resistor to check the temperature; otherwise, there is danger of burns.
- Non-professional technicians are prohibited from monitoring signals when the equipment is running; otherwise, there is danger of personal injury or damage to the equipment.

! WARNING

- When the equipment is running, do not drop other articles or metals into the equipment; otherwise, the equipment may be damaged.
- Do not start or stop the equipment by turning on or off the connector; otherwise, the equipment may be damaged.

DURING MAINTENANCE

DANGER

- Non-professionals are strictly prohibited from equipment installation, wiring, maintenance, inspection or component replacement.
- It is prohibited to maintain the equipment when power is on; otherwise, there is danger of electric shock.
- After the equipment power is cut off, wait for at least 10 minutes before maintaining the equipment or performing other operations.

WARNING

- Follow the equipment maintenance and repair requirements for routine and regular inspection and maintenance of the product and equipment, and maintain maintenance records.

DURING REPAIR

DANGER

- Follow Lock Out/Tag Out procedures.
- Non-professionals are strictly prohibited from equipment installation, wiring, maintenance, inspection or component replacement.
- It is prohibited to repair the equipment when power is on; otherwise, there is danger of electric shock.
- After the equipment power is cut off, wait for at least 10 minutes before inspecting or repairing the equipment or performing other operations.

CAUTION

- Repair the equipment according to the product warranty agreement.
- When the equipment has a fault or is damaged, troubleshoot and repair the equipment and product follow guidance by professionals, and maintain repair records.
- Replace the product's wearing components under the guidance of professionals.
- Do not continue to use damaged machines; otherwise, greater damage may occur.
- After replacing the equipment, recheck the equipment wiring and parameter settings again.

DURING SCRAPPING

CAUTION

- Scrap the equipment and product according to government regulations and standards to avoid property loss or personal injury.
- Recycle scrapped equipment and product according to industrial waste processing standards to avoid pollution to the environment.

SAFETY MARKS

For safe operation and maintenance of the equipment, be sure to observe the safety marks affixed to the equipment and product. Do not damage, destroy or peel off the safety marks. Safety marks are described as follows:

- Read the user manual before installing and running the equipment; otherwise, there is danger of electric shock.
- Do not dismantle the cover within 10 minutes after the power is turned off.
- After cutting off the power at the input and output terminals, wait for 10 minutes until the power indicator turns off before maintaining, inspecting or wiring the equipment.

1. PRODUCT INFORMATION

1.1 NAMEPLATE AND DESIGNATION RULE

1.2 GENERAL SPECIFICATIONS

Voltage class			200 VAC to 240 VAC			
Model: RSI-PPMI-XXXX-2-1-B-IP20-IM			00H5	0001	0002	0003
Dimension(2)	Height, Wid	epth	[H]: 180 mm , [W]: 75 mm , [D]: 145 mm			
Mounting Hole, [mm]			Ф5.0			
Drive Input	Rated Input		$1 \mathrm{PH}, 200 \mathrm{VAC}$ to 240 VAC , -15\% to +10\%			
	Rated input	nt, [A]	6.5	11.0	18.0	27.0
	Rated input	uency	$50 / 60 \mathrm{~Hz}, \pm 5 \%$			
	Power capa	kVA]	1.7	3.0	4.8	7.1
Drive Output	Applicable	[kW]	0.4	0.75	1.5	2.2
	motor	[HP]	0.5	1	2	3
	Output curr		2.6	4.6	8.0	11.0
	Default carr		6	6	6	6
	Overload cap		150\% for 60 Sec			
	Max. outpu		$3 \mathrm{PH}, 0$ to 240 VAC			
	Max. outpu	uency	50 to 500 Hz			
Braking	Recommen	ower, [W]	80	80	100	100
Resistor	Recommen	resistance, min. [Ω]	200	150	100	70
Weight, [kg]			1.1			

Voltage class		380 VAC to 480 VAC				
Model: RSI-PPM	MI-XXXX-4-3-B-IP20-IM	00H5	0001	0002	0003	0005
Dimension(2)	Height, Width, Depth	[H] : $160 \mathrm{~mm},[\mathrm{~W}]$: $75 \mathrm{~mm},[\mathrm{D}]$: 145 mm				
Mounting Hole [mm]		Ф5.0				
Drive Input	Rated Input Voltage	3 PH 380 to 480 VAC, -15% to $+10 \%$				
	Rated Input Current, [A]	2.6	4.5	5.5	6.5	11.0
	Rated input frequency	$50 / 60 \mathrm{~Hz}, \pm 5 \%$				
	Power Capacity, [kVA]	1	1.5	3.0	4.0	5.9
Drive Output	Applicable [kW]	0.4	0.75	1.5	2.2	3.7
	motor [HP]	0.5	1	2	3	5
	Output Current, [A]	2.6	3.4	4.7	5.4	9.4
	Default carrier frequency, [kHz]	6	6	6	6	4
	Overload capacity	150\% for 60 Sec				
	Max. output voltage	3 PH, 0 to 480 VAC				
	Max. output frequency	50 to 500 Hz				
Braking Resistor	Recommended power, [W]	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	150	250	300	400
	Recommended resistance, min. [Ω]		300	220	200	130
Mass, [kg]		$\begin{aligned} & 300 \\ & \hline 1.1 \end{aligned}$	300			

1. PRODUCT INFORMATION

1.3 TECHNICAL SPECIFICATIONS

Items		Specification
Common functions	Highest frequency	V/F control: 0 to 500 Hz , SVC control: 0 to 500 Hz (only for three-phase models)
	Carrier frequency	0.8 kHz to 12 kHz , and able to automatically adjust carrier frequency based on load characteristics
	Input frequency resolution	Digital settings: 0.01 Hz ; analog setting: highest frequency $\times 0.025 \%$
	Control mode	V/F control
	Overload capacity	150\% rated current 60 s, 180% rated current 2 s
	Torque lifting	Automatic torque lifting, manual torque lifting, 0.1\%~30.0\%
	V/F curve	Two ways: linear type; multi-point type
	Acceleration and deceleration curve	Linear acceleration and deceleration mode, dynamic S curve. 2 types of acceleration and deceleration time, acceleration and deceleration time range 0.0~6500.0s
	DC braking	DC braking frequency: 0.00 Hz to 10 Hz ; braking time: $0.0 \mathrm{~s} \sim 100.0 \mathrm{~s}$ current value for braking action: 0% to 100%
	Jogging control	Jogging frequency range: 0.00 Hz to 50.00 Hz ; jogging and acceleration time 0.0s~6500.0s
	Multiple speed section operation	Achieve a maximum of 8 speed sections operation via control terminal
	Built-in PID	Able to achieve a closed loop control system of process control
	Automatic voltage regulation (AVR)	Automatically maintains constant output voltage when voltage changes in the power grid
	Overvoltage and overcurrent stall control	Automatically limit the current and voltage during operation to prevent frequent over flow and voltage tripping
	Fast current limiting function	Minimize overcurrent faults and protect drive normal operation
	Instantaneous stop prevention	Use load feedback power to compensate for the reduction of voltage in case of instantaneous power cut, and maintain the drive running in a short time; the RUN indicator on the panel will flash
	Fast current limiting	Minimize overcurrent faults of drive unit
	Timing control	Timing control function: set time range to $0.0 \mathrm{~min} \sim 6500.0 \mathrm{~min}$
	Communication bus	Support field bus: RS485, CANlink (can be customized)
Operation	Command source	Operating panel, control terminal, serial communication port, and can be switched in many ways
	Frequency source	5 frequency sources: Digital, analog voltage, analog current, pulse (DI4), serial port, and can be switched in many ways
	Auxiliary frequency sources	5 auxiliary frequency sources can flexibly realize auxiliary frequency trimming and frequency synthesis
	Input terminals	4 digital input terminals, 1 supports the highest 20 kHz high speed pulse input; 1 analog input terminal, supports $0 \sim 10 \mathrm{~V} / 0 \sim 20 \mathrm{~mA}$ input/ output terminal
	Output terminals	1 relay output terminal, 1 analog output terminal, supports $0 \sim 10 \mathrm{~V}$ voltage output
	Input/output terminal	1 input/output terminal DIO, supports selecting DI and DO function via DIP switch; details, see figure 2-2, DO common terminal is COM
	Communication terminals	1 line 485, communication
Display \& keyboard operation (format)	LED display	Display and keyboard operation
	Keyboard lock and function selection	Achieve keyboard partial or full lock, define the function of some keys to prevent misuse
	Protection function	Short circuit detection of electric motor, input and output phase loss protection, overcurrent protection, overvoltage protection, undervoltage protection, overheating protection, overload protection

1.4 ENVIRONMENT

Environment conditions	Indoor, keep away from direct sunlight, no dust, corrosive gas, flammable gas, oil mist, water vapor, water or salt.		
Altitude	Use below 1000 m . The drive power derates 1% at every 100 m altitude increase. The highest allowed attitude is 3000 m.		
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$,	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. When the temperature is between $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, the drive
:---			
current derates 1.5% at every $1^{\circ} \mathrm{C}$ increase. The highest allowed working			
temperature is $50^{\circ} \mathrm{C}$.			

1.5 EMC FILTER

1.5.1 Internal Filter

The single-phase model's standard built-in filter is able to meet the EN61800-3 C3 transmission requirement of CE certification. C3 filter is built in the drive.

1.5.2 External Filter

The single-phase model's standard built-in filter is able to meet the EN61800-3 C2 transmission requirement of CE certification.

Notes:
Keep the connection cable between the filter and drive as short as possible (shorter than 30 cm).

Ensure that the filter and drive are connected to the same grounding surface.
The grounding of the filter output terminal should be connected to the input ground terminal of the drive.
The filter must be reliably grounded; failure to comply may result in filter malfunction.

Drive model	Power capacity kVA	Input current A
Single-phase power: 200 V to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ range: -15% to 10%		
RSI-PPMI-00H5-2-1-B-IP20-IM	1.7	6.5
RSI-PPMI-0001-2-1-B-IP20-IM	3.0	11.0
RSI-PPMI-0002-2-1-B-IP20-IM	4.8	18.0
RSI-PPMI-0003-2-1-B-IP20-IM	7.1	27.0

1. PRODUCT INFORMATION

Drive model	Power capacity kVA	Input current A
Three-phase power: 380 V to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ range: -15\% to 10%		
RSI-PPMI-00H5-4-3-B-IP20-IM	1	2.6
RSI-PPMI-0001-4-3-B-IP20-IM	1.5	4.5
RSI-PPMI-0002-4-3-B-IP20-IM	3.0	5.5
RSI-PPMI-0003-4-3-B-IP20-IM	4.0	6.5
RSI-PPMI-0005-4-3-B-IP20-IM	5.9	11.0

1.5.3 Input AC Reactor

It is recommended to use an input line reactor with a Benshaw PowerPro ${ }^{\text {tw }}$ Micro General Purpose Drive for sizes above 2 HP to reduce the current harmonics.
The minimum size of a single-phase AC reactor should be greater than 8 mH to meet the IEC 61000-3-12 standard.
The minimum size of a three-phase AC reactor should be greater than 5 mH to meet the IEC 61000-3-12 standard.

1.5.4 Output Reactor

When the motor output cable is longer than 10 meters, the rising edge of pulse wave generates a reflected voltage at the motor terminals due to the mismatch of characteristic impedance of motor and cable. The reflected voltage is imposed on the high voltage square wave pulse, bringing impact for stator winding insulation, which causes sustained impact of
greater heat loss and more partial discharge pulse due to high frequency harmonics, resulting in a rapid failure of motor insulation in PWM under pulse voltage.
Therefore, when the motor output cable is longer than 10 meters, it is recommended that you install a reactor at the output terminal.

1) Recommended reactor inductance

Motor cable length after installation of
Drive model
Power capacity kVA Input current A
Output reactor inductance mH reactor m
Single-phase power: 200 V to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ range: -15% to 10%

RSI-PPMI-00H5-2-1-B-IP20-IM	1.7	2.6	1.47	150
RSI-PPMI-0001-2-1-B-IP20-IM	3.0	4.6	0.754	150
RSI-PPMI-0002-2-1-B-IP20-IM	4.8	8.0	0.588	150
RSI-PPMI-0003-2-1-B-IP20-IM	7.1	11.0	0.42	150
Three-phase power: 380 V to 480	V, $50 / 60 ~ \mathrm{~Hz}$ range: -15% to	10%		150
RSI-PPMI-00H5-4-3-B-IP20-IM	1.5	4.5	0.754	150
RSI-PPMI-0001-4-3-B-IP20-IM	1.5	4.5	0.754	150
RSI-PPMI-0002-4-3-B-IP20-IM	3.0	5.5	0.754	150
RSI-PPMI-0003-4-3-B-IP20-IM	4.0	6.5	0.754	150
RSI-PPMI-0005-4-3-B-IP20-IM	5.9	11.0	0.42	

2. MECHANICAL INSTALLATION AND WIRING

2.1 MECHANICAL INSTALLATION

The AC drive must be installed in a noncombustible cabinet that provides effective electrical and mechanical protection for CE requirements. Installation must conform to local and regional laws and regulations, and to relevant IEC requirements.

2.1.1 Installation Environment

Item	Requirements
Cooling and ventilation	Install the AC drive on a backplate, and ensure there is sufficient space around the enclosure to allow for efficient heat dissipation.
Mounting location	Ensure the mounting location is: Away from direct sunlight, in an area where humidity is 95\% RH or less with no condensation, protected against corrosive, combustible or explosive gases and vapours, and free from oil, dirt, dust or metallic powders.
Vibration	Ensure the mounting location is not affected by levels of vibration that exceeds 0.6 G. Avoid installing the enclosure near punching machines or other mechanical machinery that generates high levels of vibration or mechanical shock.
Protective enclosure	The AC drive must be installed in a noncombustible cabinet that provides effective electrical and mechanical protection for CE requirements. Installation must conform to local and regional laws and regulations, and to relevant IEC requirements.

Corrosive, combustible or explosive gases

2. MECHANICAL INSTALLATION AND WIRING

2.1.2 Cabinet Layout

Installing drive side by side

Installing one drive above another

2.1.3 Installation Method

Note:
Tighten all screws based on the specified tightening torque.

2. MECHANICAL INSTALLATION AND WIRING

2.2 WIRING

2.2.1 Typical System Connection

RSI-PPMI terminal wiring diagram

Note:
For the DI terminals, low level is valid and valid level is < 5 V , input resistance is 3.6 K , DI1 to DI3 satisfies 100 Hz frequency input, and DI4 satisfies 20 kHz frequency input. The requirement for pulse duty cycle is 30% to 70%.

RSI-PPMI with no communication interface terminal wiring diagram

2.2.2 Terminal Description

Terminals of main circuit

Terminal	Terminal Name	Description
L1, L2	Single-phase supply input	Connect to the single-phase AC power supply.
BR, (+)	Braking resistor connection	Connected to external braking resistor.
U,V,W	Output terminals	Connect to a three-phase motor.
Dround (PE)	Grounding connection.	

2. MECHANICAL INSTALLATION AND WIRING

2.2.2 Terminal Description

Terminal	Te
$\mathrm{R}, \mathrm{S}, \mathrm{T}$	T
$\mathrm{BR},(+)$	B
$\mathrm{U}, \mathrm{V}, \mathrm{W}$	O
\square	G

Terminal Name
Three-phase supply input Braking resistor connection Output terminals Ground (PE)

Description Connect to the three-phase AC power supply. Connected to external braking resistor. Connect to a three-phase motor. Grounding connection.

RSI-PPMI main control board terminals

Terminal	Terminal Name	Function	
DI1-DI4	Digital input	Multi-functional input terminal	Low effective, valid level < 5 V , DI-DI3 is low speed DI, frequency $<100 \mathrm{~Hz}$, DI4 is high speed pulse input, highest can support 20 kHz frequency
COM	24 V grounded power supply	24 V grounded power supply	Internal isolation from COM
+10 V	Analog input/	10 V analog voltage output	$10 \mathrm{~V} \pm 10 \%$, up to 10 mA
GND	output	Analog ground	Internal isolation from COM
AI		Analog input signal channel 1 at one end	(0 to 10 V) / (0 to 20 mA) input, 12 bit resolution, with calibrated accuracy of 0.5%, response time is less than 8 ms
AO		Analog output 1	AO: 0 to 10 V , with calibrated accuracy of 100 mV , 10 bit resolution, with calibrated accuracy of 1%
T/A-T/C	Relay output	Relay output	TA-TC: Normally open; Load: 3 A/250 VAC 3 A/30 VDC
GND	Communication	Common ground with 10 V	
485+		RS485 positive communication signal	Half-duplex RS485 communication, with the highest baud rate of 115200, can support up
485-		RS485 negative communication signal	to 64 nodes. Note: 485 communication function can only be used on standard RSI-PPMI models.

RSI-PPMI with no communication interface main control board terminals

Terminal	Terminal Name	Function	
DI1-DI4	Digital input	Multi-functional input terminal	Low effective, valid level < 5 V , DI-DI3 is low speed DI, frequency < 100 HZ , DI4 is high speed pulse input, highest can support 20 kHz frequency
DIO	Digital input/ output	Multi-functional digital input/output terminal	Use DIP switch to select DI/DO function; for details, see figure 2-2, DO common terminal is COM.
COM	24 V grounded power supply	24 V grounded power supply	Internal isolation from COM
+10 V	Analog input/ output	10 V analog voltage output	$10 \mathrm{~V} \pm 10 \%$, up to 10 mA
GND		Analog ground	Internal isolation from COM
AI		Analog input signal channel 1 at one end	(0 to 10 V) / (0 to 20 mA) input, 12 bit resolution, with calibrated accuracy of 0.5%, response time is less than 8 ms
AO		Analog output 1	AO: 0 to 10 V , with calibrated accuracy of 100 mV , 10 bit resolution, with calibrated accuracy of 1%
$\begin{aligned} & \text { T/A-T/C,T/ } \\ & \text { A-T/B } \end{aligned}$	Relay output	Relay output	TA-TC: Normally open; TA-TB: Normally closed Load: 3 A/250 VAC 3 A/30 VDC Note:TA-TB is only used on models with no communication interface

2.2.3 Remove the EMC and VDR Screws

\triangle WARNING

To prevent personnel injury or damage to the equipment, you must ensure mains power is off before you start. If the drive is applied in an IT system, remove the EMC and VDR screws as shown in the following figure:

3. OPERATING PANEL

3.1 FAMILIARIZE YOURSELF WITH THE OPERATING PANEL

Overview

Key	Key Name	Function
PRG	Programming	Enter or exit Level I menu. Return to the previous menu.
ENTER	Confirm	Enter each level of the menu interface. Confirm displayed parameter setting.
\triangle	Increment	When navigating a menu, move the selection up through the screens available.
	Decrement	When navigating a menu, move the selection down through the screens available.
	Shift	Select the displayed parameter in the STOP or RUNNING status. Select the digit to be modified when modifying a parameter value.
RUN	RUN	Start the AC drive when using the operating panel control mode. This function is inactive when using the terminal or communication control mode.
Stopre	Stop/Reset	Stop the AC drive when the drive is in the RUNNING status. Perform a reset operation when the drive is in the FAULT status. Note: The functions of this key can be restricted by using function F7-02.
MF.K	Multifunction	Perform a function switchover as defined by the setting of F7-01; for example, to quickly switch command source or direction.
	Menu mode selection	Press to switch between menu modes as defined by the setting of FP-03.

Status Indicators

There are four red LED status indicators at the top of the operating panel.

Indicator	Indication
RUN	ON indicates the RUNNING status.
	FLASHING indicates power dip ride-through.
	OFF indicates the STOP status.
REMOTE	ON indicates under terminal control.
	FLASHING indicates under remote control.
	OFF indicates under operating panel control.
FWD/REV	ON indicates reverse motor rotation.
	OFF indicates forward motor rotation.
TUNE/TC	FLASHING indicates a fault condition on AC drive.
	OFF indicates a normal condition on AC drive.

Operations of Parameters

Parameter Arrangement

Parameter Group	Description	Remark
F0 to FF	Standard parameter group	Standard function parameters
A1 to AE	Advanced parameter group	Al/AO correction
U0	RUNNING status parameter group	Display of basic parameters

4. OUICK SETUP

4.1 SETUP FLOWCHART

START	Para.	Parameter Name	Default	Commission
Set motor parameters		Motor Nameplate		
		INDUCTION MOTOR		
	F1-01	Rated motor power model dependent 1.5 Unit: kW		
	F1-02	Rated motor voltage	model dependent	380
		Unit: V		
	F1-03	Rated motor current	model dependent	3.4
		Unit: A		
	F1-04	Rated motor frequency	model dependent	50
		Unit: Hz		
	F1-05	Rated motor speed	model dependent	2800
\downarrow		Unit: rpm.		
Perform motor auto-tuning	F1-37		0	1
\square^{\square}		0 : No auto-tuning 1: Static auto-tuning Steps for auto-tuning: 1. Ensure the UVW connection between the AC drive and motor is not cut off by output contactor; if it is cut off, then manually move the output contactor. 2. Set F0-02 $=0$ (operating panel), so that the key (son) can start the tuning procedure. 3. Set $\mathrm{F} 1-37=1$, press "TUNE". 4. Press the key on panel, and motor starts auto-tuning; it usually takes about 30 seconds to finish auto-tuning. Wait until LED stops displaying "TUNE."		
Select command source	F0-02	Command source selection	1	
\downarrow		0: Operating panel (keypad \& display) 1:Terminal I/O control 2: Serial comms		
Select frequency reference setting channel	F0-03	Main frequency reference setting channel selection	0	
		0: Digital setting F0-08 (pressing Δ or ∇ can change F0-08 easily, and the revised value won't be cleared even after power off) 1: Digital setting F0-08 (pressing Δ or ∇ can change F0-08 easily, but the revised value will be cleared after power off) 2: AI 5: Pulse setting (DI4) 6: Multi-reference setting 7: Simple PLC 8: PID 9: Communication setting		
CONTINUE	Para.	Parameter Name	Default	Commission

4. OUICK SETUP

4.1 SETUP FLOWCHART

Para.	Parameter Name	Default	Commission

4. OUICK SETUP

4.1 SETUP FLOWCHART

CONTINUE	Para.	Parameter Name	Default	Commission
Set DO function	F5-02	Relay function selection (T/A-T/C)	0	
If an analog output is used		31: Al input exceeding limit 32: Load lost 33: Reverse running 34: Zero current 36: Output current exceeding limit 37: Frequency lower limit reached (having output at stop) 38: Alarm output 40: Current running time reached 41: Fault output		
Set AO function	F5-07	AO function selection	0	
∇		0 : Running frequency 1: Set frequency 2: Output current 3: Output torque 4: Output power 5: Output voltage 6: Pulse input (100% corresponding to 20 kHz) 7: AI 12: Communication setting 13: Motor rotational speed 14: Output current (100% corresponding to 100 A) 15 : Output voltage (100% corresponding to 1000 V)		
Set accel. /decel. time	F0-17	Acceleration time 1	Model dependent	
\square		0.0 to 6500.0s		
If smooth accel./decel.	F0-18	Deceleration time 1	Model dependent	
is requested		0.0 to 6500.0s		
Set S-curve	F6-07	Acceleration/ Deceleration mode	0	
		0: Linear acceleration/deceleration 1: Static S-curve acceleration/deceleration 2: Dynamic S-curve acceleration/deceleration		
	F6-08	Time proportion of S-curve at Accel. start	30.0	
		0.0\% to (100.0\% - F6-09)		
	F6-09	Time proportion of S-curve at Accel. end	30.0	
∇				
		at Accel. end		
CONTINUE	Para.	Parameter Name	Default	Commission

CONTINUE	Para.	Parameter Name	Default	Commission
Set VF parameters	F3-00	V/F curve selection	0	
		0: Linear V/F 1: Multi-point V/F		
	F3-01	Torque boost	0.0	
		0.0 to 30.0%; NOTE: If it is 0 , then auto torque boost is activated, and it is recommended to use auto torque boost.		
	F3-02	Frequency limit of torque boost	50.00	
		0.00 Hz to maximum output frequency		
	F3-03	Multi-point V/F frequency 1	0.00	
		0.00 Hz to F3-05		
	F3-04	Multi-point V/F voltage 1	0.0	
		0.0 to 100.0 V		
	F3-05	Multi-point V/F frequency 2	0.00	
		F3-03 to F3-07, Hz		
	F3-06	Multi-point V/F voltage 2	0.0	
		0.0 to 100.0 V		
	F3-07	Multi-point V/F frequency 3	0.00	
		F3-05 to rated motor frequency F1-04, Hz		
	F3-08	Multi-point V/F voltage 3	0.0	
∇		0.0 to 100.0 V		
Trial RUN		Use operating panel, digital input terminal or serial communication control to start AC drive, and check to determine if the running performance satisfies your application. If yes, then go forward to next step. If NO, then go back to adjust parameters as needed.		
Finish				

5. PARAMETER TABLE

5.1 INTRODUCTION

Groups F and A include standard function parameters. Group U includes the monitoring function parameters and extension card communication parameters.

5.2 STANDARD PARAMETERS

Para. No.	Para. Name	Setting Range	Default	Comms. Address
Group FO: Standard Parameters				
F0-01	Motor 1 control mode	1: Feedback vector control (FVC) 2: V/F control	2	0xF001/0x0001
F0-02	Command source selection	0 : Operating panel 1:Terminal I/O control 2: Serial comms.	0	0xF002/0x0002
F0-03	Main frequency reference setting channel selection	0 : Digital setting (non-retentive at power down) 1: Digital setting (retentive at power down) 2: AI 5: Pulse reference (DI4) 6: Multi-reference 7: Simple PLC 8: PID reference 9: Serial comms.	0	0xF003/0x0003
FO-04	Auxiliary frequency reference setting channel selection	Same with F0-03	0	0xF004/0x0004
F0-05	Base value of range of auxiliary frequency reference for main and auxiliary calculation	0 : Relative to maximum frequency 1: Relative to main frequency reference	0	0xF005/0x0005
F0-06	Range of auxiliary frequency reference for main and auxiliary calculation	0\% to 150\%	100\%	0xF006/0x0006
F0-07	Final frequency reference setting selection	00 to 34	00	0xF007/0x0007
F0-08	Preset frequency	0.00 to max. frequency (F0-10)	50.00 Hz	0xF008/0x0008
F0-09	Running direction	0 : Run in the default direction 1: Run in the direction reverse to the default direction	0	0xF009/0x0009
F0-10	Max. frequency	50.00 to 500.00 Hz	50.00 Hz	0xF00A/0x000A
F0-11	Setting channel of frequency upper limit	0 : Set by FO-12 1: AI 2: External operating panel 4: Pulse reference (DI4) 5: Communication reference	0	$0 \times F 00 \mathrm{~B} / 0 \times 000 \mathrm{~B}$
F0-12	Frequency reference upper limit	FO-14 to FO-10	50.00 Hz	0xF00C/0x000C
FO-14	Frequency reference lower limit	0.00 Hz to frequency upper limit (FO-12)	0.00 Hz	0xF00E/0x000E
F0-15	Carrier frequency	0.8 to 12.0 kHz	Model dependent	0xF00F/0x000F
F0-16	Carrier frequency adjusted with temperature	0 : Disabled 1: Enabled	1	0xF010/0x0010
F0-17	Acceleration time1	0.00 to 650.00 s (FO-19=2) 0.0 to 6500.0 s ($\mathrm{FO}-19=1$) 0 to 65000s (F0-19=0)	Model dependent	0xF011/0x0011

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F0-18	Deceleration time 1	0.00 to 650.00 s (F0-19 $=2$) 0.0 to 6500.0 s (F0-19=1) 0 to 65000s (FO-19=0)	Model dependent	0xF012/0x0012
F0-19	Acceleration/deceleration time unit	$\begin{aligned} & 0: 1 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 0.01 \mathrm{~s} \end{aligned}$	1	0xF012/0x0013
F0-23	Retentive of digital setting frequency upon stop	0 : Not retentive 1: Retentive	0	0xF017/0x0017
F0-25	Acceleration/deceleration time base frequency	$\begin{aligned} & \text { 0: Maximum frequency } \\ & \text { (F0-10) } \\ & \text { 1: Frequency reference } \\ & \text { 2: } 100 \mathrm{~Hz} \end{aligned}$	0	0xF019/0x0019
F0-26	Base frequency for UP/ DOWN modification during running	0 : Running frequency 1: Frequency reference	0	$0 x F 01 \mathrm{~A} / 0 \times 001 \mathrm{~A}$
Group F1: Motor 1 Parameters				
F1-01	Rated motor power	0.1 to 5.5 kW	Model dependent	0xF101/0x0101
F1-02	Rated motor voltage	1 to 600 V	Model dependent	0xF102/0x0102
F1-03	Rated motor current	0.01 to 30.00 A	Model dependent	0xF103/0x0103
F1-04	Rated motor frequency	0.01 Hz to max. frequency	Model dependent	0xF104/0x0104
F1-05	Rated motor speed	1 to 65535 rpm	Model dependent	0xF105/0x0105
F1-06	Asynchronous motor stator resistance	0.001 to 65.535 ohm	Auto-tuning dependent	0xF106/0x0106
F1-07	Asynchronous motor rotor resistance	0.001 to 65.535 ohm	Auto-tuning dependent	0xF107/0x0107
F1-08	Asynchronous motor leakage inductive reactance	0.001 to 65.535 mH	Auto-tuning dependent	0xF108/0x0108
F1-09	Asynchronous motor mutual inductive reactance	0.001 to 65.535 mH	Auto-tuning dependent	0xF109/0x0109
F1-10	Asynchronous motor no-load current	0.01A to F0-03	Auto-tuning dependent	0xF109/0x010A
F1-37	Motor auto-tuning method selection	0: No auto-tuning 1: Static auto-tuning 1 2: Complete auto-tuning	0	0xF125/0x0125
Group F2: Vector Control Parameters				
F2-00	Speed loop proportional gain 1	1 to 100	30	0xF200/0x0200
F2-01	Speed loop integral time 1	0.01 to 10.00s	0.50s	0xF201/0x0201
F2-02	Switchover frequency 1	0.00 to F2-05	5.00 Hz	0xF202/0x0202
F2-03	Speed loop proportional gain 2	1 to 100	20	0xF203/0x0203
F2-04	Speed loop integral time 2	0.01 to 10.00 s	1.00s	0xF204/0x0204
F2-05	Switchover frequency 2	F2-02 to max. frequency	10.00 Hz	0xF205/0x0205
F2-06	SVC/FVC slip compensation gain	50% to 200\%	100\%	0xF206/0x0206
F2-07	SVC speed feedback filter time	0.000 to 0.100 s	0.050s	0xF207/0x0207
F2-08	Vector control overexcitation gain	0 to 200	0	0xF208/0x0208

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
Group F3: V/F Control Parameters				
F3-00	V/F curve setting	0: Linear V/F 1: Multi-point V/F 10: V/F complete separation 11: V/F half separation	0	0xF300/0x0300
F3-01	Torque boost	0.0% : automatic boost 0.1% to 30%	0.0\%	0xF301/0x0301
F3-02	Cut-off frequency of torque boost	0.00 Hz to max. frequency	50.00 Hz	0xF302/0x0302
F3-03	Multi-point V/F frequency 1	0.00 Hz to F3-05	0.00 Hz	0xF303/0x0303
F3-04	Multi-point V/F voltage 1	0.0\% to 100.0\%	0.0\%	0xF304/0x0304
F3-05	Multi-point V/F frequency 2	F3-03 to F3-07	0.00 Hz	0xF305/0x0305
F3-06	Multi-point V/F voltage 2	0.0\% to 100.0\%	0.0\%	0xF306/0x0306
F3-07	Multi-point V/F frequency 3	F3-05 to rated motor frequency (F1-04)	0.00 Hz	0xF307/0x0307
F3-08	Multi-point V/F voltage 3	0.0\% to 100.0\%	0.0\%	0xF308/0x0308
F3-09	Slip compensation gain	0.0\% to 200.0\%	0.0\%	0xF309/0x0309
F3-10	V/F over-excitation gain	0 to 200	64	$0 \times F 30 \mathrm{~A} / 0 \times 030 \mathrm{~A}$
F3-13	Voltage source for V/F separation	0 : Set by F3-14 1: AI 2: External operating panel 4: Pulse reference (DI4) 5: Multi-reference 6: Simple PLC 7: PID reference 8: Serial comms. 100.0\% corresponds to the rated motor voltage.	0	0xF30D/0x030D
F3-14	Digital setting of voltage for V/F separation	0 V to rated motor voltage	0 V	0xF30E/0x030E
F3-15	Voltage rise time of V/F separation	0.0 to 1000.0s	0.0s	$0 \times F 30 \mathrm{~F} / 0 \times 030 \mathrm{~F}$
F3-16	Voltage decline time of V/F separation	0.0 to 1000.0s	0.0s	0xF310/0x0310
F3-17	Stop mode selection for V/F separation	0 : Frequency and voltage declining to 0 independently 1: Frequency declining after voltage declines to 0	0	0xF311/0x0311
F3-18	Current limit level	50\% to 200\%	150\%	0xF312/0x0312
F3-19	Current limit selection	0: Disabled 1: Enabled	1	0xF313/0x0313
F3-20	Current limit gain	0 to 100	20	0xF314/0x0314
F3-21	Compensation factor of speed multiplying current limit level	0 to 200\%	50\%	0xF315/0x0315

5. PARAMETER TABLE

\begin{tabular}{|c|c|c|c|c|}
\hline Para. No. \& Para. Name \& Setting Range \& Default \& Comms. Address \\
\hline F3-22 \& Voltage limit \& 330.0 to 800.0 V \& \begin{tabular}{l}
Single phase: 390.0 V \\
Three phase: 760.0 V
\end{tabular} \& 0xF316/0x0316 \\
\hline F3-23 \& Voltage limit selection \& 0: Disabled 1: Enabled \& 1 \& 0xF318/0x0317 \\
\hline F3-24 \& Frequency gain for voltage limit \& 0 to 100 \& 50 \& 0xF318/0x0318 \\
\hline F3-25 \& Voltage gain for voltage limit \& 0 to 100 \& 30 \& 0xF319/0x0319 \\
\hline F3-26 \& Frequency rise threshold during voltage limit \& 0 to 50 Hz \& 5 Hz \& 0xF31A/0x031A \\
\hline F3-27 \& Slip compensation time constant \& 0.1 to 10.0s \& 0.5 \& 0xF31B/0x031B \\
\hline \multicolumn{5}{|l|}{Group F4: Input Terminals} \\
\hline F4-00

F4-01 \& DI1 function selection

den \& | 0: No function |
| :--- |
| 1: Forward run (FWD) |
| 2: Reverse run (REV) |
| 3:Three-wire control |
| 4: Forward jog (FJOG) |
| 5: Reverse jog (RJOG) |
| 6: Terminal UP |
| 7:Terminal DOWN |
| 8: Coast to stop |
| 9: Fault reset (RESET) |
| 10: RUN disabled |
| 11: External fault normally open input |
| 12: Multi-reference terminal 1 |
| 13: Multi-reference terminal 2 |
| 14: Multi-reference terminal 3 |
| 15: Multi-reference terminal 4 |
| 16: Terminal 1 for acceleration/ deceleration time selection | \& 4 \& 0xF400/0x0400

0xF401/0x0401

\hline
\end{tabular}

18: Frequency reference setting channel switchover
19: UP and DOWN setting clear (terminal, operation panel)
20: Command source switchover
21: Acceleration/deceleration prohibited
22: PID disabled
23: PLC state reset
30: Pulse input as frequency reference (On standard RSI-PPMI models, it is valid for DI4 terminal; on RSI-PPMI models with no communication interface, it is valid for DIO terminal)
(Continued on following page)

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F4-02	DI3 function selection	32: Immediate DC injection braking 33: External fault normally closed input 34: Frequency modification enabled 35: PID operation direction reverse	9	0xF402/0x0402
F4-03	D14 function selection	36: External stop 1 37: Command source switchover 2 38: PID integral disabled 39: Switchover between main frequency reference and preset frequency 40: Switchover between auxiliary frequency reference and preset frequency 43: PID parameter switchover	12	0xF403/0x0403
F4-04	DIO terminal input function selection (only used on RSI-PPMI models with no communication interface)	47: Emergency stop (ES) 48: External stop 2 49: Deceleration DC injection braking 50: Clear running time this time 51: Two-wire control/ three-wire control 52: Reverse running prohibited (End)		
F4-10	DI filter time	0.000 s to 1.000 s	0.010s	0xF40A/0x040A
F4-11	Terminal I/O control mode	0 :Two-wire control mode 1 1: Two-wire control mode 2 2:Three-wire control mode 1 3: Three-wire control mode 2	0	$0 \times F 40 \mathrm{~B} / 0 \times 040 \mathrm{~B}$
F4-12	Terminal UP/DOWN rate	0.001 to $65.535 \mathrm{~Hz} / \mathrm{s}$	$1.000 \mathrm{~Hz} / \mathrm{s}$	0xF40C/0x040C
F4-13	Al curve 1 min . input	0.00 V to F4-15	0.00 V	0xF40D/0x040D
F4-14	Corresponding percentage of Al curve 1 min . input	-100.00\% to 100.0\%	0.0\%	0xF40E/0x040E
F4-15	Al curve 1 max. input	F4-13 to 10.00 V	10.00 V	0xF40F/0x040F
F4-16	Corresponding percentage of Al curve 1 max. input	-100.00\% to 100.0\%	100.0\%	0xF410/0x0410
F4-17	Al1 filter time	0.00s to 10.00 s	0.10s	0xF411/0x0411
F4-18	Al curve 2 min . input	0.00 V to F4-20	0.00 V	0xF412/0x0412
F4-19	Corresponding percentage of Al curve 2 min . input	-100.00\% to 100.0\%	0.0\%	0xF413/0x0413
F4-20	Al curve 2 max. input	F4-18 to 10.00 V	10.00 V	0xF414/0x0414
F4-21	Corresponding percentage of Al curve 2 max. input	-100.00\% to 100.0\%	100.0\%	0xF415/0x0415
F4-22	External operating panel potentiometer filter time	0.00 to 10.00 s	0.10s	0xF416/0x0416
F4-28	Pulse min. input	0.00 kHz to F4-30	0.00 kHz	0xF41C/0x041C
F4-29	Corresponding percentage of pulse min. input	-100.00\% to 100.0\%	0.0\%	0xF41D/0x041D
F4-30	Pulse max. input	F4-28 to 20.00 kHz	50.00 kHz	0xF41E/0x041E
F4-31	Corresponding percentage of pulse max. input	-100.00% to 100.0\%	100.0\%	0xF41F/0x041F
F4-32	Pulse filter time	0.00 s to 10.00 s	0.10s	0xF420/0x0420

5. PARAMETER TABLE

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F5-07	AO function selection	0 : Running frequency 1: Frequency reference 2: Output current 3: Output torque 4: Output power 5: Output voltage 6: Pulse input 7: AI 8: External operating panel potentiometer 10: Length 11: Count value 12: Communication reference 13: Motor speed 14: Output current 15: Output voltage 16: Motor output torque (actual value)	0	0xF507/0x0507
F5-10	AO zero offset coefficient	-100.0\% to 100.0\%	0.0\%	0xF50A/0x050A
F5-11	AO gain	-10.00 to 10.00	1.00	0xF50B/0x050B
F5-18	Relay 1 output delay	0.0 to 3600.0s	0.0s	0xF512/0x0512
F5-20	DIO output delay	0.0 to 3600.0s	0.0s	0xF514/0x0514
F5-22	DO active mode selection 1		0000	0xF516/0x0516
Group F6: Start/Stop Control				
F6-00	Start mode	0: Direct start 1: Catching a spinning motor	0	0xF600/0x0600
F6-01	Mode of catching a spinning motor	0 : From stop frequency 1: From 50 Hz 2: From max. frequency	0	0xF601/0x0601
F6-03	Start frequency	0.00 to 10.00 Hz	0.00 Hz	0xF603/0x0603
F6-04	Start frequency holding time	0.0 to 100.0s	0.0s	0xF604/0x0604
F6-07	Acceleration/deceleration mode	0: Linear acceleration/deceleration 1: Static S-curve acceleration/deceleration 2: Dynamic S-curve acceleration/ deceleration	0	0xF607/0x0607
F6-08	Time proportion of S-curve start segment	0.0\% to (100.0\% -F6-09)	30.0\%	0xF608/0x0608
F6-09	Time proportion of S-curve end segment	0.0\% to (100.0\%-F6-08)	30.0\%	0xF609/0x0609
F6-10	Stop mode	0: Decelerate to stop 1: Coast to stop	0	0xF60A/0x060A
F6-11	DC injection braking 2 start frequency	0.00 Hz to maximum frequency	0.00 Hz	0xF60B/0x060B
F6-12	DC injection braking 2 delay time	0.0 to 100.0s	0.0s	0xF60C/0x060C
F6-13	DC injection braking 2 level	0\% to 100\%	50\%	0xF60D/0x060D
F6-14	DC injection braking 2 active time	0.0 to 100.0s	0.0s	0xF60E/0x060E
F6-21	Demagnetization time	0.00 s to 5.00 s	0.5 s	0xF615/0x0615
F6-22	Min. output frequency	0.00 Hz to F6-11	0.00 Hz	0xF616/0x0616
F6-23	Reserved by manufacturer	1 to 100	10	0xF617/0x0617

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F7-14	Accumulative power consumption	0 to 65535 kWh	-	0xF70E/0x070E
Group F8: Auxiliary Functions				
F8-00	Jog frequency reference	0.00 Hz to max. frequency	2.00 Hz	0xF800/0x0800
F8-01	Jog acceleration time	0.0 to 6500.0s	20.0s	0xF801/0x0801
F8-02	Jog deceleration time	0.0 to 6500.0s	20.0s	0xF802/0x0802
F8-03	Acceleration time 2	0.0 to 6500.0s	20.0s	0xF803/0x0803
F8-04	Deceleration time 2	0.0 to 6500.0s	20.0s	0xF804/0x0804
F8-07	Acceleration time 4	0.0 to 6500.0s	0.0s	0xF807/0x0807
F8-08	Deceleration time 4	0.0 to 6500.0s	0.0s	0xF808/0x0808
F8-12	Forward/reverse run switchover dead-zone time	0.0 to 3000.0s	0.0s	0xF80C/0x080C
F8-13	Reverse RUN selection	0: Disabled 1: Enabled	0	0xF80D/0x080D
F8-14	Running mode when frequency reference is lower than frequency lower limit	0 : Run at frequency reference lower limit 1: Stop 2: Run at zero speed	0	0xF80E/0x080E
F8-16	Accumulative power-on time threshold	0 to 65000 h	Oh	0xF810/0x0810
F8-17	Accumulative running time threshold	0 to 65000 h	Oh	0xF811/0x0811
F8-18	Startup protection selection	0: Disabled 1: Enabled	0	0xF812/0x0812
F8-19	Frequency detection value 1	0.00 Hz to max. frequency	50.00 Hz	0xF813/0x0813
F8-20	Frequency detection hysteresis 1	0.0\% to 100.0\%	5.0\%	0xF814/0x0814
F8-21	Detection width of target frequency reached	0.0\% to 100.0\%	0.0\%	0xF815/0x0815
F8-25	Switchover frequency of accel. time 1 and accel. time 2	0.00 Hz to max. frequency	0.00 Hz	0xF819/0x0819
F8-26	Switchover frequency of decel. time 1 and decel. time 2	0.00 Hz to max. frequency	0.00 Hz	0xF81A/0x081A
F8-27	Set highest priority to terminal JOG function	0: Disabled 1: Enabled	0	0xF81B/0x081B
F8-30	Detection of frequency 1	0.00 Hz to max. frequency	50.00 Hz	0xF81E/0x081E
F8-31	Detection width of frequency 1	0.0\% to 100.0\% (max. frequency)	0.0\%	0xF81F/0x081F
F8-34	Zero current detection level	$\begin{aligned} & 0.0 \% \text { to } 300.0 \% \\ & \text { (rated motor current) } \end{aligned}$	5.0\%	0xF822/0x0822
F8-35	Zero current detection delay	0.01 s to 600.00 s	0.10s	0xF823/0x0823
F8-36	Output overcurrent threshold	0.0% (no detection) 0.1% to 300.0% (rated motor current)	200.0\%	0xF824/0x0824
F8-37	Output overcurrent detection delay	0.00 s to 600.00 s	0.00s	0xF825/0x0825
F8-38	Detection level of current 1	0.0% to 300.0% (rated motor current)	100.0\%	0xF826/0x0826
F8-39	Detection width of current 1	$\begin{aligned} & 0.0 \% \text { to } 300.0 \% \\ & \text { (rated motor current) } \end{aligned}$	0.0\%	0xF827/0x0827
F8-42	Timing function	0: Disabled 1: Enabled	0	0xF82A/0x082A
F8-43	Running time setting channel	0 : Set by F8-44 1: AI	0	0xF82B/0x082B

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F8-44	Running time	0.0 to 6500.0 min	0.0 min	0xF82C/0x082C
F8-45	Al input voltage lower limit	0.00 V to F8-46	3.10 V	0xF82D/0x082D
F8-46	Al input voltage upper limit	F8-45 to 10.00 V	6.80 V	0xF82E/0x082E
F8-48	Cooling fan working mode	0 : Working during drive running 1: Working continuously 2: Working when temperature reached	0	0xF830/0x0830
F8-49	Wakeup frequency	F8-51 to max. frequency (FO-10)	0.00 Hz	0xF831/0x0831
F8-50	Wakeup delay time	0.0 to 6500.0s	0.0s	0xF832/0x0832
F8-51	Hibernating frequency	0.00 Hz to wakeup frequency (F8-49)	0.00 Hz	0xF833/0x0833
F8-52	Hibernating delay time	0.0 to 6500.0s	0.0s	0xF834/0x0834
F8-53	Running time threshold this time	0.0 to 6500.0 min	0.0 min	0xF835/0x0835
F8-54	Output power correction coefficient	0.0\% to 200.0\%	100.0\%	0xF836/0x0836
F8-55	Emergency deceleration time	0.0 to 6500.0s	10.0s	0xF837/0x0837
F8-57	Speed synchronous control selection	0 : Disabled 1: Enabled	0	0xF839/0x0839

This parameter selects whether to enable the speed synchronous control function.
This function involves bidirectional data communication between two or more AC drives via CANlink, implementing target frequency of one or more slaves to be synchronized to that of the master.
When this function is enabled, CANlink communication addresses of the master and slaves are matched automatically. The baud rate in speed synchronous control is set in Fd-00.
F8-58
$\begin{array}{ll}\text { Master and slave selection } & 0: \text { Master } \\ \text { in synchronous control } & \text { 1: Slave }\end{array}$
0xF83A/0x083A

This parameter is used to select whether the AC drive is master or slave. When the AC drive is slave, set F0-03 = 9 to set frequency reference via communication.

Group F9: Fault and Protection				
F9-00	Motor overload protection	0: Disabled 1: Enabled	1	0xF900/0x0900
F9-01	Motor overload protection gain	0.20 to 10.00	1.0	0xF901/0x0901
F9-02	Motor overload pre-warning coefficient	50\% to 100\%	80\%	0xF902/0x0902
F9-07	Detection of short-circuit to ground upon power-on	0: Disabled 1: Enabled	1	0xF907/0x0907
F9-08	Braking unit applied voltage	310.0 V to 800.0 V	Single phase: 378.0 V Three phase: 700.0 V	0xF908/0x0908
F9-09	Auto reset times	0 to 20	0	0xF909/0x0909
F9-10	Selection of DO action during auto reset	0 : Not act 1: Act	0	0xF90A/0x090A
F9-11	Delay of auto reset	0.1 s to 100.0s	1.0s	0xF90B/0x090B
F9-13	Output phase loss protection	0 : Disabled 1: Enabled	1	0xF90D/0x090D

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F9-14	1st fault type	0: No fault 1: Reserved 2: Overcurrent during acceleration 3: Overcurrent during deceleration 4: Overcurrent at constant speed 5: Overvoltage during acceleration 6: Overvoltage during deceleration 7: Overvoltage at constant speed 8: Pre-charge resistor overloaded 9: Undervoltage 10: AC drive overloaded 11: Motor overloaded	-	0xF90E/0x090E
F9-15	2nd fault type	12: Input phase loss 13: Output phase loss 14: IGBT overheat 15: External fault 16: Communication abnormal 17: Reserved 18: Current detection abnormal 19: Motor auto-tuning abnormal 20: Reserved 21: Parameter read-write abnormal 22: Reserved 23: Motor short circuited to ground 24: Reserved	-	0xF90F/0x090F
F9-16	3rd (latest) fault type	25: Reserved 26: Accumulative running time reached 29: Accumulative power-on time reached 30: Load lost 31: PID feedback lost during running 40: Overcurrent fast prevention timeout 41: Reserved 42: Excessive speed deviation 43: Reserved 45: Reserved 51: Reserved 55: Slave fault in speed synchronous	-	0xF910/0x0910
F9-17	Frequency upon 3rd fault	-	-	0xF911/0x0911
F9-18	Current upon 3rd fault	-	-	0xF912/0x0912
F9-19	Bus voltage upon 3rd fault	-	-	0xF913/0x0913
F9-20	DI state upon 3rd fault	-	-	0xF914/0x0914
F9-21	DO state upon 3rd fault	-	-	0xF915/0x0915
F9-22	AC drive state upon 3rd fault	-	-	0xF916/0x0916
F9-23	Power-on time upon 3rd fault	-	-	0xF917/0x0917
F9-24	Running time upon 3rd fault	-	-	0xF918/0x0918
F9-27	Frequency upon 2nd fault	-	-	0xF91B/0x081B
F9-28	Current upon 2nd fault	-	-	0xF91C/0x091C
F9-29	Bus voltage upon 2nd fault	-	-	0xF91D/0x091D
F9-30	DI state upon 2nd fault	-	-	0xF91E/0x091E
F9-31	DO state upon 2nd fault	-	-	$0 \times F 91 \mathrm{~F} / 0 \times 091 \mathrm{~F}$

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
F9-32	AC drive state upon 2nd fault	-	-	0xF920/0x0920
F9-33	Power-on time upon 2nd fault	-	-	0xF921/0x0921
F9-34	Running time upon 2nd fault	-	-	0xF922/0x0922
F9-37	Frequency upon 1st fault	-	-	0xF925/0x0925
F9-38	Current upon 1st fault	-	-	0xF926/0x0926
F9-39	Bus voltage upon 1st fault	-	-	0xF927/0x0927
F9-40	DI state upon 1st fault	-	-	0xF928/0x0928
F9-41	DO state upon 1st fault	-	-	0xF929/0x0929
F9-42	AC drive state upon 1st fault	-	-	0xF92A/0x092A
F9-43	Power-on time upon 1st fault	-	-	0xF92B/0x092B
F9-44	Running time upon 1st fault	-	-	$0 \times F 92 \mathrm{C} / 0 \times 092 \mathrm{C}$
F9-47	Fault protection action selection 1	00000 to 22222	00000	0xF92F/0x092F
F9-48	Fault protection action selection 2	00000 to 11111	00000	0xF930/0x0930
F9-49	Fault protection action selection 3	00000 to 22222	00000	0xF931/0x0931
F9-54	Frequency selection for continuing to run upon fault	0 : Current running frequency 1: Frequency reference 2: Frequency upper limit 3: Frequency lower limit 4: Backup frequency upon abnormality	0	0xF936/0x0936
F9-55	Backup frequency upon fault	0.0\% to 100.0\% (max. frequency)	100.0\%	0xF937/0x0937
F9-59	Power dip ride-through function selection	0 : Disabled 1: Bus voltage constant control 2: Decelerate to stop	0	0xF93B/0x093B
F9-60	Threshold of power dip ridethrough function disabled	80\% to F9-60	85\%	0xF93C/0x093C
F9-61	Judging time of bus voltage recovering from power dip	0.0 to 100.0s	0.5s	0xF93D/0x093D
F9-62	Threshold of power dip ridethrough function enabled	60\% to 100\%	80\%	0xF93E/0x093E
F9-63	Load lost protection	0: Disabled 1: Enabled	0	0xF93F/0x093F
F9-64	Load lost detection level	0.0\% to 100.0\%	10.0\%	0xF940/0x0940
F9-65	Load lost detection time	0.0 to 60.0s	1.0s	0xF941/0x0941
F9-71	Power dip ride-through gain Kp	0 to 100	40	0xF947/0×0947
F9-72	Power dip ride-through integral coefficient	0 to 100	30	0xF948/0x0948
F9-73	Deceleration time of power dip ride-through	0.0 to 300.0s	20.0s	0xF949/0x0949
F9-74	Restart mode after fault reset	0 : Normal 1: Catching a spinning motor	0	0xF94A/0x094A
Group FA: PID Function				
FA-00	PID reference setting channel	0 : Set by FA-01 1: AI 2: External operating panel potentiometer 4: Pulse reference (D14) 5: Via communication 6: Multi-reference	0	0xFA00/0x0A00

Para. No.	Para. Name	Setting Range	Default	Comms. Address
FA-01	PID digital setting	0.0\% to 100.0\%	50.0\%	0xFA01/0x0A01
FA-02	PID feedback setting channel	0: AI	0	$0 \times F A 02 / 0 \times 0$ A02
		1: External operating panel potentiometer		
		3: AI - external operating panel potentiometer		
		4: PULSE reference (DI4)		
		5: Via communication		
		6: AI + external operating panel potentiometer		

7: Max. (|AI|, |external operating panel potentiometer|)
8: Min. (|AI1|, |external operating panel potentiometer|)

FA-03	PID operation direction	0 : Forward 1: Reverse	0	0xFA03/0x0A03
FA-04	PID reference and feedback range	0 to 65535	1000	0xFA04/0x0A04
FA-05	Proportional gain Kp1	0.0 to 1000.0	20.0	0xFA05/0x0A05
FA-06	Integral timeTi1	0.01 s to 10.00 s	2.00s	0xFA06/0x0A06
FA-07	Differential timeTd1	0.000 s to 10.000 s	0.000 s	0xFA07/0x0A07
FA-08	PID output limit in reverse direction	0.00 Hz to max. frequency	0.00 Hz	0xFA08/0x0A08
FA-09	PID error limit	0.0\% to 100.0\%	0.0\%	0xFA09/0x0A09
FA-10	PID differential limit	0.00\% to 100.00\%	0.10\%	$0 \times F A 0 A / 0 \times 0 A 0 A$
FA-11	PID reference change time	0.00s to 650.00s	0.00s	$0 \times F A 0 B / 0 \times 0 A 0 B$
FA-12	PID feedback filter time	0.00 s to 60.00s	0.00s	$0 \times F A 0 C / 0 x 0 A 0 C$
FA-13	PID output filter time	0.00 s to 60.00 s	0.00s	0xFA0D/0x0A0D
FA-15	Proportional gain Kp2	0.0 to 1000.0	20.0	0xFA0F/0x0A0F
FA-16	Integral timeTi2	0.01 s to 10.00 s	2.00s	$0 \times F A 10 / 0 \times 0$ A10
FA-17	Differential timeTd2	0.000 s to 10.000 s	0.000s	$0 \times F A 11 / 0 \times 0$ A11
FA-18	PID parameter switchover condition	0: Not switched over 1: Switched over via DI 2: Switched over automatically according to error 3: Switched over automatically according to running frequency	0	$0 \times F A 12 / 0 \times 0$ A12
FA-19	PID error 1 for auto switchover	0.0\% to FA-20	20.0\%	0xFA13/0x0A13
FA-20	PID error 2 for auto switchover	FA-19 to 100.0\%	80.0\%	$0 \times F A 14 / 0 \times 0$ A14
FA-21	PID initial value	0.0\% to 100.0\%	0.0\%	0xFA15/0x0A15
FA-22	PID initial value active time	0.00s to 650.00s	0.00s	0xFA16/0x0A16
FA-23	Max. value of two outputs error in forward direction	0.00\% to 100.00\%	1.00\%	0xFA17/0x0A17
FA-24	Max. value of two outputs error in reverse direction	0.00\% to 100.00\%	1.00\%	$0 \times F A 18 / 0 \times 0$ A18

5. PARAMETER TABLE

Group Fb: Wobble Function, Fixed Length and Count

Fb-00	Wobble setting mode	0 : Relative to the frequency reference 1: Relative to the max. frequency	0	0xFB00/0x0B00
Fb-01	Wobble amplitude	0.0\% to 100.0\%	0.0\%	0xFB01/0x0B01
Fb-02	Wobble step	0.0\% to 50.0\%	0.0\%	0xFB02/0x0B02
Fb-03	Wobble cycle	0.1 to 3000.0s	10.0s	0xFB03/0x0B03
$\mathrm{Fb}-04$	Triangular wave rising time coefficient	0.1\% to 100.0\%	50.0\%	0xFB04/0x0B04
Fb-05	Set length	0 to 65535 m	1000 m	0xFB05/0x0B05
Fb-06	Actual length	0 to 65535 m	0 m	0xFB06/0x0B06
Fb-07	Number of pulses per meter	0.1 to 6553.5	100.0	0xFB07/0x0B07
Fb-08	Set count value	1 to 65535	1000	0xFB08/0x0B08
Group FC: Multi-Reference and Simple PLC Function				
FC-00	Reference0	-100.0\% to 100.0\%	0.0\%	0xFC00/0x0C00
FC-01	Reference1	-100.0\% to 100.0\%	0.0\%	0xFC01/0x0C01
FC-02	Reference2	-100.0\% to 100.0\%	0.0\%	0xFC02/0x0C02
FC-03	Reference3	-100.0\% to 100.0\%	0.0\%	0xFC03/0x0C03
FC-04	Reference4	-100.0\% to 100.0\%	0.0\%	0xFC04/0x0C04
FC-05	Reference5	-100.0\% to 100.0\%	0.0\%	0xFC05/0x0C05
FC-06	Reference6	-100.0\% to 100.0\%	0.0\%	0xFC06/0x0C06
FC-07	Reference7	-100.0\% to 100.0\%	0.0\%	0xFC07/0x0C07
FC-16	Simple PLC running mode	0 : Stop after running one cycle 1: Keep final values after running one cycle 2: Repeat after running one cycle	0	0xFC10/0x0C10

Para. No.	Para. Name	Setting Range	Default	Comms. Address
FC-17	Simple PLC retentive selection	00 to 11	00	0xFC11/0x0C11
		Retentive selection at power down 0 : Not retentive 1: Retentive		
		Retentive selection at stop 0 : Not retentive 1: Retentive		
FC-18	Running time of simple PLC reference 0	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 12 / 0 \times 0 \mathrm{C} 12$
FC-19	Acceleration/deceleration time of simple PLC reference 0	0 to 1	0	$0 \times F C 13 / 0 \times 0 \mathrm{C} 13$
FC-20	Running time of simple PLC reference 1	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 14 / 0 \times 0 \mathrm{C} 14$
FC-21	Acceleration/deceleration time of simple PLC reference 1	0 to 1	0	0xFC15/0x0C15
FC-22	Running time of simple PLC reference 2	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 16 / 0 \times 0 \mathrm{C} 16$
FC-23	Acceleration/deceleration time of simple PLC reference 2	0 to 1	0	$0 \times F C 17 / 0 \times 0 \mathrm{C} 17$
FC-24	Running time of simple PLC reference 3	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 18 / 0 \times 0 \mathrm{C} 18$
FC-25	Acceleration/deceleration time of simple PLC reference 3	0 to 1	0	0xFC19/0x0C19
FC-26	Running time of simple PLC reference 4	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 1 \mathrm{~A} / 0 \times 0 \mathrm{C} 1 \mathrm{~A}$
FC-27	Acceleration/deceleration time of simple PLC reference 4	0 to 1	0	$0 \times F C 1 B / 0 \times 0 \mathrm{C} 1 \mathrm{~B}$
FC-28	Running time of simple PLC reference 5	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 1 C / 0 \times 0 \mathrm{C} 1 \mathrm{C}$
FC-29	Acceleration/deceleration time of simple PLC reference 5	0 to 1	0	0xFC1D/0x0C1D
FC-30	Running time of simple PLC reference 6	0.0s (h) to 6500.0s (h)	0.0s (h)	$0 \times F C 1 E / 0 \times 0 \mathrm{C} 1 \mathrm{E}$
FC-31	Acceleration/deceleration time of simple PLC reference 6	0 to 1	0	$0 \times F C 1 F / 0 \times 0 \mathrm{C} 1 \mathrm{~F}$

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
FC-32	Running time of simple PLC reference 7	0.0s (h) to 6500.0s (h)	0.0s (h)	0xFC20/0x0C20
FC-33	Acceleration/ deceleration time of simple PLC reference 7	0 to 1	0	$0 \times F C 21 / 0 \times 0 \mathrm{C} 21$
FC-50	Time unit of simple PLC running	$\begin{aligned} & \text { 0: s } \\ & \text { 1: h } \end{aligned}$	0	0xFC32/0x0C32
FC-51	Reference 0 source	0: Set by FC-00 1: AI 2: External operating panel potentiometer 4: PULSE reference 5: PID 6: Set by F0-08 and modified via UP/DOWN	0	$0 \times F C 33 / 0 \times 0 \mathrm{C} 33$
Group Fd: Communication				
Fd-00	Baud rate	0000 to 5009	5005	0xFD00/0x0D00
Fd-01	Data format symbol	0: No check (8-N-2) 1: Even parity check (8-E-1) 2: Odd parity check (8-O-1) 3: No check (8-N-1) (Valid for ModBus)	0	0xFD01/0x0D01
Fd-02	Local address	0 : Broadcast address 1 to 247	1	0xFD02/0x0D02
Fd-03	Response delay	0 to 20 ms	2	0xFD03/0x0D03
Fd-04	Communication timeout	0.0: Invalid 0.1 s to 60.0 s	0.0 s	0xFD04/0x0D04
Fd-05	ModBus protocol selection and PROFIBUS-DP data frame	0: Non-standard ModBus protocol 1: Standard ModBus protocol	1	0xFD05/0x0D05
Fd-06	Current resolution read by communication	$\begin{aligned} & 0: 0.01 \mathrm{~A} \\ & 1: 0.1 \mathrm{~A} \end{aligned}$	0	0xFD06/0x0D06
Fd-07	PC software selection	0: Disabled 1: Enabled	1	0xFD07/0x0D07

Para. No.	Para. Name	Setting Range	Default	Comms. Address
Group FE: User-defined Parameters				
FE-00	User-defined parameter 0	F0.00 to FP.xx	F0.00	0xFE00/0x0E00
FE-01	User-defined parameter 1	A0.00 to Ax.xx	F0.00	0xFE01/0x0E01
FE-02	User-defined parameter 2	U0.00 to U0.xx	F0.00	$0 \times F E 02 / 0 \times 0 \mathrm{E} 02$
FE-03	User-defined parameter 3		F0.00	$0 \times F E 03 / 0 \times 0 \mathrm{E} 03$
FE-04	User-defined parameter 4		F0.00	$0 \times F E 04 / 0 \times 0$ E04
FE-05	User-defined parameter 5		F0.00	$0 \times F E 05 / 0 \times 0 \mathrm{E} 05$
FE-06	User-defined parameter 6		F0.00	$0 \times F E 06 / 0 \times 0 \mathrm{E} 06$
FE-07	User-defined parameter 7		F0.00	$0 \times F E 07 / 0 \times 0$ E07
FE-08	User-defined parameter 8		F0.00	$0 \times F E 08 / 0 \times 0 \mathrm{E} 08$
FE-09	User-defined parameter 9		F0.00	$0 \times F E 09 / 0 \times 0$ E09
FE-10	User-defined parameter 10		F0.00	$0 \times F E 0$ A/0x0E0A
FE-11	User-defined parameter 11		F0.00	$0 \times F E 0 B / 0 \times 0 E 0 B$
FE-12	User-defined parameter 12		F0.00	0xFE0C/0x0E0C
FE-13	User-defined parameter 13		F0.00	0xFE0D/0x0E0D
FE-14	User-defined parameter 14		F0.00	$0 \times F E 0 E / 0 \times 0 E 0 E$
FE-15	User-defined parameter 15		F0.00	$0 \times F E 0 F / 0 \times 0 E 0 F$
FE-16	User-defined parameter 16		F0.00	0xFE10/0x0E10
FE-17	User-defined parameter 17		F0.00	0xFE11/0x0E11
FE-18	User-defined parameter 18		F0.00	$0 \times F E 12 / 0 \times 0 \mathrm{E} 12$
FE-19	User-defined parameter 19		F0.00	$0 \times F E 13 / 0 \times 0 \mathrm{E} 13$
FE-20	User-defined parameter 20		F0.00	$0 \times F E 14 / 0 \times 0$ E14
FE-21	User-defined parameter 21		F0.00	$0 \times F E 15 / 0 \times 0 \mathrm{E} 15$
FE-22	User-defined parameter 22		F0.00	$0 \times F E 16 / 0 \times 0 \mathrm{E} 16$
FE-23	User-defined parameter 23		F0.00	$0 \times F E 17 / 0 \times 0 \mathrm{E} 17$
FE-24	User-defined parameter 24		F0.00	$0 \times F E 18 / 0 \times 0$ E18
FE-25	User-defined parameter 25		F0.00	0xFE19/0x0E19
FE-26	User-defined parameter 26		F0.00	$0 \times F E 1 \mathrm{~A} / 0 \times 0 \mathrm{E} 1 \mathrm{~A}$
FE-27	User-defined parameter 27		F0.00	$0 \times F E 1 B / 0 x 0 \mathrm{E} 1 \mathrm{~B}$
FE-28	User-defined parameter 28		F0.00	0xFE1C/0x0E1C
FE-29	User-defined parameter 29		F0.00	0xFE1D/0x0E1D
FE-30	User-defined parameter 30		F0.00	$0 \times F E 1 E / 0 \times 0 \mathrm{E} 1 \mathrm{E}$
FE-31	User-defined parameter 31		F0.00	$0 \times F E 1 F / 0 \times 0 \mathrm{E} 1 \mathrm{~F}$
Group FP: Function Parameter Management				
FP-00	User password	0 to 65535	0	0x1F00
FP-01	Industry macro	0 : No operation 01: Restore factory parameters except motor parameters 02: Clear records 03: Reserved 04: Back up current user parameters 05 to 19: Reserved 20: Mechanical movement industry (conveying belt) 21: Inertia industry (fan) 22 to 500: Reserved 501: Restore user backup parameters	0	$0 \times 1 F 01$

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
A1-07	Function selection for AI used as DI	Same as F4-00	0	0xA107/0x4107
A1-10	Active state selection for AI used as DI		0	$0 \times \mathrm{A} 10 \mathrm{~A} / 0 \times 410 \mathrm{~A}$
A1-11	VDO1 function selection	0: Connected with DIx internally 1 to 41: same as F5-04	0	$0 \times \mathrm{A} 10 \mathrm{~B} / 0 \times 410 \mathrm{~B}$
A1-12	VDO2 function selection	0: Connected with Dlx internally 1 to 41: same as F5-04	0	$0 \times \mathrm{A} 10 \mathrm{C} / 0 \times 410 \mathrm{C}$
A1-13	VDO3 function selection	0 : Connected with DIx internally 1 to 41: same as F5-04	0	0xA10D/0x410D
A1-14	VDO4 function selection	0 : Connected with DIx internally 1 to 41: same as F5-04	0	0xA10E/0x410E
A1-15	VDO5 function selection	0 : Connected with DIx internally 1 to 41: same as F5-04	0	$0 \times \mathrm{A} 10 \mathrm{~F} / 0 \times 410 \mathrm{~F}$
A1-16	VDO1 output delay	0.0 to 3600.0 s	0.0s	0xA110/0x4110
A1-17	VDO2 output delay	0.0 to 3600.0s	0.0s	0xA111/0x4111
A1-18	VDO3 output delay	0.0 to 3600.0s	0.0s	0xA112/0x4112
A1-19	VDO4 output delay	0.0 to 3600.0s	0.0s	0xA113/0x4113
A1-20	VDO5 output delay	0.0 to 3600.0s	0.0s	0xA114/0x4114
A1-21	VDO active mode selection	00000 to 11111	00000	0xA115/0x4115
		 VDO5: VO 0: Positive logic active 1: Negative logic active		
Group A5: Control Optimization				
A5-00	DPWM switchover frequency upper limit	0.00 Hz to max. frequency	12.00 Hz	0xA500/0x4500
A5-02	Dead zone compensation mode selection	0: No compensation 1: Compensation mode 1	1	0xA502/0x4502
A5-03	Random PWM depth	0: Random PWM invalid 1 to 10: PWM carrier frequency random depth	3	0xA503/0x4503
A5-04	Overcurrent fast prevention	0 : Disabled 1: Enabled	1	0xA504/0x4504

5. PARAMETER TABLE

Para. No.	Para. Name	Setting Range	Default	Comms. Address
A5-05	Max. output voltage coefficient	100\% to 110\%	103\%	0xA505/0x4505
A5-06	Undervoltage threshold	140.0 to 420.0 V	Single phase: 200.0 V Three phase: 350.0 V	0xA600/0x4600
A5-08	Low speed carrier frequency upper limit	0.0 to 6.0 kHz	0.0	0xA508/0×4508
A5-09	Overvoltage threshold	200.0 to 820.0 V	Single phase: 410.0 V Three phase: 820.0 V	0xA509/0x4509
Group A6: AI Curve Setting				
A6-24	Jump point of Al1 input corresponding setting	-100.0\% to 100.0\%	0.0\%	0xA618/0x4618
A6-25	Jump amplitude of Al1 input corresponding setting	0.0\% to 100.0\%	0.5\%	0xA619/0x4619
A6-26	Jump point of Al2 input corresponding setting	-100.0\% to 100.0\%	0.0\%	0xA61A/0x461A
A6-27	Jump amplitude of Al2 input corresponding setting	0.0\% to 100.0\%	0.5\%	0xA61B/0x461B
Group AA: FVC/SVC Extension Parameters				
AA-05	SVC speed filter	5 to 32 ms	15 ms	0xAA05/0x4A05
AA-06	SVC speed feedback method	0 to 3	0	0xAA06/0x4A06
AA-07	SVC magnetic field adjustment bandwidth	0.5 to 8.0 Hz	4.0 Hz	0xAA07/0x4A07
AA-08	SVC magnetic field open loop control low speed current	30\% to 150\%	100	0xAA08/0x4A08
AA-09	Open loop control switchover frequency	2.0 to 100.0 Hz	4.0 Hz	$0 \times A A 07 / 0 \times 4 A 07$
AA-10	Open loop control deceleration speed fluctuation coefficient	0 to 6	3	0xAA0A/0x4A0A
AA-11	Open loop control acceleration/ deceleration time	0.1 to 1000.0s	50.0s	$0 \times A A 0 B / 0 \times 4 A 0 B$
AA-12	Resistance identification upon startup	0: Disabled 1: Enabled	0	0xAA0C/0x4A0C
AA-13	Stator resistance coefficient 1 identification before startup	0 to 65535	Auto-tuning parameter	0xAA0D/0x4A0D
AA-14	Stator resistance coefficient 2 identification before startup	0 to 65535	Auto-tuning parameter	0xAA0E/0x4AOE
AA-15	Stator resistance coefficient 3 identification before startup	0 to 65535	Auto-tuning parameter	0xAA0F/0x4A0F
Group AC: Al/AO Correction				
AC-00	Al measured voltage 1	-10.00 to 10.000 V	350.0 V	0xAC00/0x4C00
AC-01	Al displayed voltage 1	-10.00 to 10.000 V	Factory-corrected	0xAC01/0x4C01
AC-02	Al measured voltage 2	-10.00 to 10.000 V	Factory-corrected	0xAC02/0x4C02
AC-03	Al displayed voltage 2	-10.00 to 10.000 V	Factory-corrected	$0 \times A C 03 / 0 \times 4 \mathrm{C} 03$
AC-12	AO target voltage 1	-10.00 to 10.000 V	Factory-corrected	$0 \times \mathrm{ACOC} / 0 \times 4 \mathrm{COC}$
AC-13	AO measured voltage 1	-10.00 to 10.000 V	Factory-corrected	0xACOD/0x4COD
AC-14	AO target voltage 2	-10.00 to 10.000 V	Factory-corrected	$0 \times A C O E / 0 \times 4 \mathrm{COE}$
AC-15	AO measured voltage 2	-10.00 to 10.000 V	Factory- corrected	$0 \times A C 0 F / 0 \times 4 \mathrm{COF}$

Note: Parameters in groups A1 and A5 are not displayed by default. They can be displayed by setting FP-02.
Group AE: AI/AO Manufacturer Correction Value

AE-00	Al1 measured voltage 1	-9.999 to 4.000 V	2.000 V	0xAE00/0x4E00
AE-01	Al1 sampled voltage 1	-9.999 to 4.000 V	2.000 V	0xAE01/0x4E01
AE-02	Al1 measured voltage 2	-9.999 to 9.999 V	8.000 V	0xAE02/0x4E02
AE-03	Al1 sampled voltage 2	-9.999 to 9.999 V	8.000 V	0xAE03/0x4E03
AE-12	A01 ideal voltage 1	0.500 to 4.000 V	2.000 V	$0 \times A E 0 C / 0 \times 4 E 0 C$
AE-13	A01 measured voltage 1	0.500 to 4.000 V	2.000 V	$0 \times A E 0 D / 0 \times 4 E 0 D$
AE-14	AO1 ideal voltage 2	6.000 to 9.999 V	8.000 V	0xAE0E/0x4E0E
AE-15	AO1 measured voltage 2	6.000 to 9.999 V	8.000 V	$0 \times A E 0 E / 0 \times 4 E 0 E$

5.3 MONITORING PARAMETERS

Para. No	Para. Name	Comms. Address
Group U0: Monitoring Parameters		
U0-00	Running frequency	0x7000
U0-01	Frequency reference	0x7001
U0-02	Bus voltage	0x7002
U0-03	Output voltage	0x7003
U0-04	Output current	0×7004
U0-05	Output power	0×7005
U0-06	Output torque	0×7006
U0-07	DI state	0×7007
U0-08	DO state	0×7008
U0-09	Al voltage	0×7009
U0-10	Communication protocol	$0 \times 700 \mathrm{~A}$
U0-11	External operating panel potentiometer voltage	$0 \times 700 \mathrm{~B}$
U0-12	Count value	$0 \times 700 \mathrm{C}$
U0-13	Length value	$0 \times 700 \mathrm{D}$
U0-14	Load speed display	$0 \times 700 \mathrm{E}$
U0-15	PID reference	0x700F
U0-16	PID feedback	0x7010
U0-17	PLC stage	0x7011
U0-18	Pulse reference	0×7012
U0-19	Feedback speed	0×7013
U0-20	Remaining running time	0x7014
U0-21	Al voltage before correction	0×7015
U0-22	External operating panel potentiometer voltage	0×7016
U0-24	Motor speed	0×7018
U0-25	Accumulative power-on time	0x7019
U0-26	Accumulative running time	$0 \times 701 \mathrm{~A}$
U0-27	Pulse reference	0x701B
U0-28	Communication reference	$0 \times 701 \mathrm{C}$
U0-30	Main frequency reference	0x701E
U0-31	Auxiliary frequency reference	0x701F
U0-32	Viewing any register address value	0x7020
U0-35	Target torque	0x7023
U0-37	Power factor angle	0x7025
U0-39	Target voltage upon V/F separation	0x7027
U0-40	Output voltage upon V/F separation	0x7028
U0-41	DI state display	0x7029
U0-42	DO state display	$0 \times 702 \mathrm{~A}$
U0-45	Fault information	0x702D
U0-59	Reserved	$0 \times 703 \mathrm{~B}$
U0-60	Reserved	$0 \times 703 \mathrm{C}$
U0-61	AC drive state	$0 \times 703 \mathrm{D}$
U0-62	Current fault code	$0 \times 703 \mathrm{E}$
U0-63	Reserved	$0 \times 703 \mathrm{~F}$
U0-64	Number of slaves	0x7040
U0-65	Torque upper limit	0×7041
U0-69	Speed of transmitting DP	0×7045
U0-71	Communication card current display	0×7047
U0-78	Linear speed	0X704E

6. TROUBLESHOOTING

6.1 AC DRIVE PERFORMANCE FINE TUNING

Stage	Symptom	Diagnostics	Remedies
Start	Rollback	Start frequency is too low	Increase F6-03, ranging 0 to 10 Hz
		Torque output is insufficient	Make sure F3-00 = 0, F3-01 = 0
	Starting jerk	Start frequency is too high	Decrease F6-03, ranging 0 to 10 Hz
Acceleration	Jerk when acceleration starts	Too fast acceleration at this section	Increase F6-08, ranging 0 to (100-(F6-09))\% or increase F0-17, ranging 0 to 6500s
	Jerk when acceleration ends	Too fast acceleration at this section	Increase F6-09, ranging 0 to (100-(F6-08))\% or increase F0-17, ranging 0 to 6500s
	Vibration	Overcurrent stall prevention occurs	Decrease load to reduce current demand
Nominal speed	Vibration	Too large current loop PI gains	Double check the motor parameters and then perform motor auto-tuning once more
Deceleration	Vibration	Overcurrent stall prevention occurs	Decrease load to reduce current demand
Stop	Jerk	Too strong DC injection at stop	Decrease F6-13, ranging 0 to 100\%
	Slip	Too short DC injection active time at stop	Increase F6-14,ranging 0 to 100s
		Too weak DC injection at stop	Increase F6-13, ranging 0 to 100\%
		Braking device applies too late	Check the timing of braking device

6.2 FAULT CODES AND TROUBLESHOOTING

Display	Fault Name	Possible Causes	Solutions
ErrOD	Overcurrent during acceleration	Ground fault or short circuit exists in the output circuit.	Check whether short circuit occurs on motor, motor cable or contactor.
		Acceleration time is too short.	Increase acceleration time.
		Customized torque boost or V/F curve is not appropriate.	Adjust the customized torque boost or V/F curve.
		The voltage is too low.	Adjust the voltage to normal range.
		The spinning motor is started.	Enable the catching a spinning motor function or start the motor after it stops.
		A load is added suddenly during acceleration.	Cancel the suddenly added load.
		The AC drive power class is too low.	Replace with a drive of a higher power class.
		The braking resistor resistance is low. The braking resistor is short circuited.	Replace with a new braking resistor.
Err03	Overcurrent during deceleration	Ground fault or short circuit exists in the output circuit.	Check whether short-circuit occurs on motor, motor cable or contactor.
		Acceleration time is too short.	Increase acceleration time.
		The voltage is too low.	Adjust the voltage to normal range.
		A load is added suddenly during deceleration.	Cancel the suddenly added load.
		Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.
		The braking resistor resistance is small. The braking resistor is short circuited.	Replace a new braking resistor.
Errou	Overcurrent at constant speed	Ground fault or short circuit exists in the output circuit.	Check whether short circuit occurs on motor, motor cable or contactor.
		The voltage is too low.	Adjust the voltage to normal range.
		A load is added suddenly during running.	Cancel the suddenly added load.
		The AC drive power class is too low.	Replace with a drive of a higher power class.
		The braking resistor resistance is low. The braking resistor is short circuited.	Replace with a new braking resistor.
Erres	Overvoltage during acceleration	Input voltage is too high.	Adjust input voltage to normal range.
		An external force drives motor during acceleration.	Cancel the external force.
		Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.
		Acceleration time is too short.	Increase acceleration time.
Errob	Overvoltage during deceleration	Input voltage is too high.	Adjust input voltage to normal range.
		An external force drives motor during deceleration.	Cancel the external force or install braking resistor.
		Deceleration time is too short.	Increase deceleration time.
		Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.
Errof	Overvoltage at constant speed	Input voltage is too high.	Adjust input voltage to normal range.
		An external force drives motor during running.	Cancel the external force or install a braking resistor
Erro8	Control power fault	Input voltage is not within the permissible range.	Adjust the input voltage to within the permissible range.

6. TROUBLESHOOTING

6.2 FAULT CODES AND TROUBLESHOOTING

Display	Fault Name	Possible Causes	Solutions
Erros	Undervoltage	Instantaneous power failure occurs.	Reset the fault.
		The AC drive's input voltage is not within the permissible range.	Adjust the voltage to within normal range.
		The bus voltage is abnormal.	Replace the AC drive.
		The rectifier bridge, the pre-charge resistor, the drive board or the control board are abnormal.	Replace the AC drive.
Errin	Drive overload	Load is too heavy or locked-rotor occurs on motor.	Reduce load or check motor and mechanical conditions.
		The AC drive power class is too low.	Replace with a drive of a higher power class.
Erril	Motor overload	F9-01 (Motor overload protection gain) is set improperly.	Set F9-01 correctly.
		Load is too heavy or locked-rotor occurs on motor.	Reduce load or check motor and mechanical conditions.
		The AC drive power class is too low.	Replace with a drive of a higher power class.
Erril	Input phase loss	Three phase input is abnormal.	Eliminate faults in external circuitry.
		Drive board is abnormal.	Eliminate faults in external circuitry.
		Lightning protection board is abnormal.	Contact the agent or Benshaw.
		Control board is abnormal.	Contact the agent or Benshaw.
Err 13	Output phase loss	Motor winding is damaged.	Check resistance between motor cables. Replace motor winding that is damaged.
		The cable connecting the AC drive and the motor is abnormal.	Check for wiring errors and ensure the output cable is connected properly.
		The AC drive's three-phase outputs are unbalanced when the motor is running.	Check whether the motor three-phase winding is normal.
		The drive board or the IGBT is abnormal.	Replace the AC drive.
Err 14	IGBT overheat	The ambient temperature is too high.	Lower the ambient temperature.
		The ventilation is clogged.	Clean the ventilation.
		The fan is damaged.	Replace the cooling fan.
		Thermally sensitive resistor of IGBT is damaged.	Replace the AC drive.
		The AC drive IGBT is damaged.	Replace the AC drive.
Erris	External equipment fault	External fault signal is input via DI.	Confirm that the mechanical condition allows restart (F8-18) and reset the operation.
		External fault signal is input via virtual I/O.	Confirm that the virtual I/O parameters in group A1 are set correctly and reset the operation.
Erris	Communication fault	Host computer is in abnormal state.	Check the cable of host computer.
		Communication cable is abnormal.	Check the communication cables.
		Communication parameters in Group Fd are set improperly.	Set communication parameters in Group Fd properly.
		If, after checking all the preceding, the fault the default settings.	t still exists, restore
Erris	Current detection fault	The drive board is abnormal.	Replace the AC drive.
Erral	EEPROM read- write fault	EEPROM chip is damaged	Replace the AC drive.
Err23	Short circuit to ground	Motor is short circuited to the ground.	Replace cable or motor.
		Top tube of the AC drive is damaged. Ask professional to check.	Replace the AC drive.

Display	Fault Name		Possible Causes		Solutions		
Erreb	Acc time	mulative running eached	Accumulative running tim reaches the setting value.		Clear the record through parameter initialization.		
Errel	User-defined fault 1		User-defined fault 1 is input via DI.		Reset the operation.		
			User-defined fault 1 is input via virtual I/O.		Reset the operation.		
Erreg	User-defined fault 2		User-defined fault 2 is input via DI.		Reset the operation.		
			User-defined fault 2 is input via virtual I/O.		Reset the operation.		
Erreg	Accumulative poweron time reached		Accumulative power-on time reaches the setting value.		Clear the record through parameter initialization.		
Err30	Off load fault		The output current of AC drive is lower than F9-64 (load loss detection level).		Check whether load is disconnected or the setting of F9-64 and F9-65 (load lost detection time) satisfies actual running condition.		
Err31	PID feedback lost during running		PID feedback is lower than the setting value of FA-26 (detection level of PID feedback loss).		Check PID feedback or set FA-26 properly.		
Err40	Quick current limit		Load is too heavy or locked-rotor occurs on motor.		Reduce load or check motor and mechanical conditions.		
			The AC drive power class is too low.		Replace with a drive of a higher power class.		
Errs	Slave faulty in speed synchronous		When speed synchronous is enabled, the master receives CAN communication data but does not detect the slave. Then Err55 is reported.		1. Check the slave CAN communication cable connection. 2. Check whether CAN communication of the slave is normal.		
Fault Name	Possible Causes			Solutions			
There is no display at power-on.		The mains voltage is not input or too low. The AC drive is damaged.		Check the power supply.			
		Replac	the AC drive.				
$H[$ is displayed at power-on.				Cable between drive board and control board is in poor contact.		Re-connect the 4-pin cable and 28-pin cable.	
		Control board is damaged		Replace the AC drive.			
		The motor or motor cable is short circuited to ground.		Check whether short circuit occurs on motor, motor cable or contactor.			
		The mains voltage is too low.		Check the power supply.			
Erril		The carrier frequency setting is too high.		Reduce carrier frequency (F0-15).			
(IGBT overheat) is detected frequently.		The cooling fan is damaged, or ventilation is clogged.		Replace the fan or clean the ventilation.			
		Components inside the AC drive are damaged (thermistor or others).		Replace the AC drive.			
The motor does not rotate after the $A C$ drive runs.		There is a motor or motor cable problem.		Check that wiring between AC drive and motor is normal.			
		Related AC drive and motor parameters are set improperly.		Restore the factory parameters and re-set the motor parameters properly.			
		The drive board is faulty.		Replace the AC drive.			
The DI terminals are disabled.		Related parameters are set incorrectly.		Check and set parameters in group F4 again.			
		External signals are incorrect.		Re-connect external signal cables.			
		The control board is damaged.		Replace the AC drive.			
The AC drive detects overcurrent and overvoltage frequently.		Motor parameters are set improperly.		Set motor parameters or perform motor auto-tuning again.			
		Acceleration/deceleration time is improper.Load fluctuates.		Set proper acceleration/deceleration time.Contact the agent or Benshaw.			

Visit us online at benshaw.com and benshawexpress.com, or contact:

BENSHAW, Inc.
615 Alpha Drive
Pittsburgh, PA 15238
Phone: 412.968.0100
Fax: 412.968.5415

BENSHAW Canada

550 Bright Street East
Listowel, Ontario N4W 3W3
Phone: 519.291.5112
Fax: 519.291.2595

